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SUMMARY: 
The proposed approach combines the advantages of isogeometric analysis (IGA) and scaled boundary finite 
element method (SBFEM). The IGA is employed for idealization of the dam structure, while SBIGA is 
developed for modeling the semi-infinite fluid domain of reservoir and unbounded elastic half-space of the dam 
foundation. Water compressibility, reservoir boundary wave absorption can be taken into consideration with 
relative ease. Numerical examples of dam-reservoir-foundation system demonstrate that the proposed approach 
is highly accurate and consumes less degrees-of-freedom than conventional widely used finite element method 
and boundary element method. 
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1. INTRODUCTION 
  
An approach based on isogeometric analysis (IGA) and scaled boundary isogeometric analysis 
(SBIGA) is proposed for the earthquake response analysis of dam-reservoir-foundation system. 
Isogeometric analysis has great potential to improve the efficiency and accuracy of numerical 
structural response analysis. IGA was proposed by Hughes et al [Hughes, 2005] with some features in 
common with finite element method (FEM) and meshless method. Taking inspiration from computer 
aided design (CAD) non-uniform rational B-splines (NURBS) are used as basis functions for 
interpolation. as a result, exact geometric model can be constructed even in rather coarse mesh. 
Refinement of meshes can be implemented at all mesh levels without the necessity of subsequent 
communication with CAD description. In this paper, IGA is employed for idealization of the dam 
structures. 
  
The scaled boundary finite element method (SBFEM) put forward by Wolf and Song [Wolf, 2000] 
offers more than combing the advantages of FEM and BEM. Only the boundary needs to be 
discretized which leads to the spatial dimension reduced by one, but no fundamental solution is 
required. As a result SBFEM has emerged as an attractive alterative for the numerical analysis. 
SBFEM has outstanding performance in solving unbounded domain problems, and it satisfies 
rigorously the radiation condition at infinity. In the present research, the SBIGA approach [Zhang, 
2010], which couples SBFEM and IGA, is developed to model the semi-infinity fluid domain of 
reservoir and the unbounded elastic half space of dam foundation. SBIGA fully inherits the merits of 
IGA and SBFEM. Numerical example of a time-domain earthquake response analysis of gravity 
dam-reservoir-foundation system is presented. Effects of water compressibility, reservoir boundary 
wave absorption and structure-unbounded foundation interaction are taken into consideration. The 
computing and post-processing time for various cases of dam, reservoir and foundation modeling were 
compared to show the effectiveness of the proposed approach. Though the emphasis is placed on the 
two-dimensional dam-reservoir-foundation system, the presented formulation can be easily applied to 
three-dimensional system. 



  
  
2. MODELING OF THE DAM STRUCTURE 
  
The discretization model of the dam structure is constructed by IGA. The basis functions NURBS for 
IGA are generated from B-splines. Two spaces in B-spine have to be distinguished: the parametric 
space, specified by a knot vector defining the B-spline basis function and the physical space 
formulated by control points associated with basis functions. The B-spline parametric space 
corresponds to a patch in the physical space, consisting of multiple elements. Patch plays the role of 
subdomain within which element type and material models are assumed to be uniform. 
  
An analysis framework based on NURBS consists of the following features: (a) A mesh for a NURBS 
patch in two or three dimensions is defined by the product of knot vectors. (b) Based on isoparametric 
concept, the displacement and stress fields in structural dynamics are represented in terms of the same 
basis functions as the geometry. The coefficients of the basis functions are the degrees-of-freedom 
(DOFs) on control points. (c) Mesh refinement strategies are developed from a combination of knots 
insertion and order elevation techniques. (d) Arrays constructed from isoparametric NURBS patches 
can be assembled into global arrays in the same way as finite elements. (e) In general, control points 
are not interpolated by B-spline curves, except for the end control points for the open knot vectors. 
  
Fig. 2.1 shows an example of one-dimensional quadratic NURBS basis functions with knot vector 
{ }0,0,0,1,2,3,4,4,4 and the corresponding NURBS curve with control points denoted by red points. 
Fig. 2.2 shows 2D NURBS surface and 3D NURBS solid. And Fig. 2.3 demonstrates the mesh 
refinement for dam structure. 
  

 

 

(a) quadratic NURBS basis functions (b) quadratic NURBS curve 
Figure 2.1. quadratic NURBS basis function and NURBS curve 

 

 
(a) quadratic NURBS surface (b) quadratic NURBS solid 

Figure 2.2. quadratic NURBS basis function and NURBS curve 
(continued) 



  
(a) level 1 (b) level 2 

Figure 2.3. mesh refinement 
  
  
3. MODELING OF THE RESERVOIR 
  
An efficient procedure based on SBFEM is developed by the authors [Lin, 2012] for hydrodynamic 
analysis of dam-reservoir system. Only part of the reservoir boundaries, which coincide with the 
upstream dam face, needs to be discretized. The effects of dam flexibility, the water compressibility 
and the reservoir bottom wave absorption can be conveniently taken into consideration. In case the 
reservoir is idealized to extend to infinity along the river direction with a uniform cross-section, in the 
IGA formulation the hydrodynamic pressure at the control points are expressed as follows 
  

( ){ } ( ) ( ){ }wp S uω ω ω= −⎡ ⎤⎣ ⎦                                               (3.1) 
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where ( )wS ω⎡ ⎤⎣ ⎦  denotes the dynamic stiffness of hydrodynamic pressure in the frequency domain 

and ( ){ }u ω  the exciting acceleration on control points of dam face. Coefficient matrices [ ]12Φ , 

[ ]22Φ , [ ]1B , [ ]2B , [ ]1M  and [ ]2M are functions of the exciting frequencyω  and related to the 
shape functions of the upstream dam face and the boundary absorption behavior of the reservoir. 
  
For time domain analysis, performing inverse Fourier transform of ( )wS ω⎡ ⎤⎣ ⎦  leads to the acceleration 

unit-impulse response matrix ( )wS t⎡ ⎤⎣ ⎦  
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4. MODELING OF THE UNBOUNDED FOUNDATION 
  
The SBFEM approach to simulate the unbounded dam foundation proposed by the authors [Lin, 2007] 
is applied. Only the dam-foundation interface needs to be discretized. Some cases of foundation 
inhomogeneity can be easily taken into consideration. For the case of arch dam, the dam structure and 
a finite bounded foundation region adjacent to the dam (near field) are idealized as a substructure, the 
surrounding unbounded half-space of the foundation is approximated by a truncated zone as shown in 



Fig. 4.1. 
  

unbounded foundation

dam structure

 (a) gravity dam (b) arch dam 
Figure 4.1. Koyna earthquake record 

  
  
5.  GOVERNING EQUATIONS FOR THE EARTHQUAKE RESPONSE OF 
DAM-RESERVOIR-FOUNDATION SYSTEM 
  
In order to formulate the governing equations for the general dam-reservoir-foundation system, the 
algorithm proposed by [Radmanovie, 2012] to solve dynamic soil-structure interaction problem is 
applied. They have derived an integration scheme for time domain evaluation of dam-foundation 
interaction force vector 
  

{ } ( ){ } ( ) ( ){ } { } { }, , ,0
dnt g

b n b n b b n bb b n b nr r t M u t K u qτ τ τ∞⎡ ⎤ ⎡ ⎤= = − = +⎣ ⎦ ⎣ ⎦∫                   (5.1) 

with 
( )1 10 0 10 1

g
bbK a a M a M∞ ∞⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦                                         (5.2) 

  
where ( )bM t∞⎡ ⎤⎣ ⎦ denotes the acceleration unit impulse response matrix at the dam-foundation interface; 

( )1 /a tγ β= Δ , ( )10 1/a N t= Δ , with β and γ being the parameters of Newmark- β scheme and 

{ },b nu the displacement vector at the dam-foundation interface and time instant nt .{ },b nq depends 

solely on the values of the time steps before time nt . It is worth to note, for late times ( )bM t∞⎡ ⎤⎣ ⎦ tends 

asymptotically toward linear curve, the evaluation of { },b nq can be simplified. 

When subjected to earthquake ground acceleration input ( ){ }g
bu t , the interaction force vector 

becomes 
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Let{ }wu represents the DOFs at the dam-reservoir interface, { }bu the DOFs at the dam-foundation 
interface and { }su the DOFs of the dam structure excluding { }wu  and { }bu , dynamic equation of 
motion of the dam-reservoir-foundation system in the partitioned form for time-domain analysis is 
expressed as 
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where s

wwM⎡ ⎤⎣ ⎦  and s
bbK⎡ ⎤⎣ ⎦  have been modified to take into consideration the effect of 

dam-reservoir interaction and dam-foundation interaction. 
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where w,0S⎡ ⎤⎣ ⎦ represents hydrodynamic stiffness matrix at the initial time 0t = , matrix [ ]T  

transforms hydrodynamic water pressure into force with x, y, z components, and 
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6.  NUMERICAL EXAMPLES 
  
The koyna gravity dam with a height of 103m is selected for this study (see Fig. 6.1). The koyna 
earthquake record is used for the ground motion input, the peak acceleration in the longitudinal as well 
as in the vertical direction is assigned as 0.49g and 0.34g respectively. The wave reflection coefficient 
at the reservoir boundary is assumed as 0.75. Six cases modelling the dam, reservoir and unbounded 
foundation as shown in Table 6.1 were considered. In the first three cases dam-reservoir-foundation 
interaction with various models was studied, while in the last three cases only dam-reservoir 
interaction was studied, and rigid foundation is assumed. The total number of nodes (or control points) 
for discretization, the CPU time and post-processing time were compared. 
  
Table 6.1. Cases studied 

model Case1 Case 2 Case 3 Case 4 Case 5 Case 6 

reservoir Westergaard’s 
added mass 

SBFEM-FSI
（39 ndsa）

SBIGA-FSI
（35 cpsb）

Westergaard’s 
added mass SBFEM-FSI SBIGA-FSI

（35 cps） 
Dam 

structure 
(near field 
included) 

FEM 
（6179 nds） 

FEM 
（6179 nds）

IGA 
（988 cps）

FEM 
（2459 nds）

FEM 
（2459 nds） 

IGA 
（630 cps）

Unbounded 
foundation massless SBFEM- SSI

(41 nds) 
SBIGA - SSI
（19 cps） rigid rigid rigid 

CPU time 40 min 30 min 10 min 10 min 25 min 8 min 
Post 

processing 
time 

10 min
（Ansysc） 120 min 50 min 10 min

（Ansys） 120 min 50 min 

Annotation: a nds-nodes; b cps-control points; c processed by ANSYS software; 
FSI- fluid structure interaction; SSI- soil structure interaction. 



  

(a) Horizontal (peak 0.40g) 

(b) Vertical (peak 0.34g) 
Figure 6.1. Koyna earthquake record 

  

 
 

(a) Dam geometry (b) Case 1 

  
(c) Case 2 (d) Case 3 

(continued) 



 
 

 
(e) Case 4 (f) Case 5 (g) Case 6 

Figure 6.2. Koyna dam geometry and its mesh discretization 
  
Stress induced by earthquake excitation only are examined. The stress distribution along the neck 
section and the section 20m above the base are plotted in Fig. 6.3 and Fig. 6.4. Envelope of principle 
stresses contours for first 3 cases is depicted in Fig. 6.5. As can be observed from Figs. 6.3 and 6.4 and 
Table 6.1, both dam-foundation interaction and reservoir-boundary absorption introduce additional 
damping to the system, which results in the reduction of the earthquake response of the dam structure.  
  

  
(a) Tensile principle stresses (b) Compressive principle stresses 

Figure 6.3. Stress distribution at the neck section of the Koyna dam 
  

  
(a) Tensile principle stresses (b) Compressive principle stresses 
Figure 6.4. Stress distribution at the section 20m above the base at the Koyna dam 

  
The IGA-SBIGA model and FEM-SBFEM model give the least stress amplitudes. The massless 
foundation and the Westergaard’s added mass approach overestimate the earthquake response of the 
dam structure. Especially at the position of stress concentration, such as the point of slope change at 



the downstream face, the predicted stress amplitudes may be magnified considerably. 
  

  (a) Contour of tensile principle stress (case 1) (b) Contour of compressive principle stress (case 1)

  (a) Contour of tensile principle stress (case 2) (b) Contour of compressive principle stress (case 2)

  (a) Contour of tensile principle stress (case 3) (b) Contour of compressive principle stress (case 3)
Figure 6.5. Envelope of dynamic strees contours of koyna dam subjected to the koyna earthquake 

  
  



7.  CONCLUSIONS 
  
A coupled IGA and SBIGA approach for time-domain earthquake response analysis of 
dam-reservoir-foundation system is proposed. Numerical examples demonstrate that the proposed 
approach is computationally quite economical, while highly accurate results can be achieved. 
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