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SUMMARY: 
A very popular approach to conduct structural dynamic response analysis is to first formulate its dynamic 
equilibrium equations of motion, and then employ a step-by-step time integration scheme to solve the equations 
such that dynamic equilibrium is satisfied at discretized time instants. The selection of time step size depends on 
the features of the time integration approach, and should consider its numerical stability, desired accuracy, 
predominant frequencies of the analyzed structure as well as the major characteristics of the external loadings. In 
case of high dominant structural frequencies or dramatic loading variations, a sufficiently small time step is 
usually required to achieve satisfactory numerical accuracy. The authors studied two major cases of employing 
both force and momentum equations of motion together with a so-called “Precise Integration Method” to solve 
for dynamic structural response.  Compared with most of the conventional numerical integration methods in the 
literature, the proposed method is found less insensitive to the selection of time step size in case of impulsive 
loading and is able to provide superior numerical stability and accuracy. This study also investigates the 
advantage in the use of a nonlinear polynomial function in describing the variation of loading momentum within 
an integration time step, which further helps loosen the constraint of time step size required for better accuracy. 
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1. INTRODUCTION 
 
It is well known that mechanical governing equations describing dynamic engineering problems 
basically take the form of partial differential equations. To solve the equations, most numerical 
solution methods (e.g., finite element method, finite difference method, etc.) start with a set of 
simultaneous ordinary differential equations (ODE) through discretized spatial coordinate, and employ 
a direct integration method to obtain the final solution. In the field of structural dynamics, for instance, 
the original Newmark’s, Wilson-θ , and Houbolt methods are very popular methods that can be 
categorized as implicit methods; on the other hand, the modified Newmark’s and central difference 
methods belongs to the group of explicit methods. In either way, the time step size should be carefully 
selected in integration to ensure numerical stability as well as accuracy. Taking explicit methods for 
example, the selection of the time step size is more rigorous and usually depends on the highest 
dominant frequency of the structural system being analyzed. Such a small time step is usually set to 
satisfy the requirement of numerical stability with a tradeoff of increasing computational efforts. In 
addition, the calculated fundamental periods and vibration modes highly depend on the selected 
structural model that is used to describe a real structural system. In some cases, the higher vibration 
modes may not represent the real response of the original structural system, and will reduce the 
computational accuracy, and inevitably affect the confidence in interpreting numerical results obtained. 
As such, it is a common concern of many researchers how to develop a reliable integration algorithm 
for solving simultaneous ODEs and having the capability of dissipating fictitious high frequency 
response at the same time. 
 
Subbaraj and Dokainish (1989) presented a thorough review on direct time integration methods 
developed before 1989. One can also refer to Hughes (1987) for a number of popular integration 



methods in the literature. In addition to finite difference methods, there are other schemes using finite 
element concept to solve time integration problems, e.g., time-discontinuous Galerkin method, which 
is capable of doing integration in one single time step with self-starting initial guess, and provides 
higher accuracy and better numerical stability through dissipative integration scheme eliminating high 
frequency noise (Chien et al., 2003).  In order to solve simultaneous ODEs in a more efficient 
manner, Zhong and Williams (1994) proposed the High Precision Direct-L (HPD-L) method, which 
expressed the analytical homogeneous solution of the simultaneous ODEs in a fourth order Taylor 
series expansion to be integrated using the famous power-of-two algorithm, and in the meantime the 
external loading force was represented by a segmented piecewise-linear force history, in which the 
time step size was mainly determined by the degree of nonlinearity of the external force history, while 
the influence of the natural periods of the analyzed structure on solution accuracy was found 
insignificant. Lin et al. (1995) and Shen et al. (1995) adopted the same concept with the loading force 
history represented in the form of the famous Fourier series expansion and this approach was usually 
referred to as High Precision Direct-F (HPD-F) method in the literature, which oftentimes was 
implemented through parallel computing techniques to solve dynamic structural problems. Zhong et al. 
(1996) proposed a so-called “Subdomain Precise Time Integration Method,” which incorporated 
computational efficiency of the finite difference method to solve both linear and nonlinear dynamic 
problems. Extending from Tsai and Chuang (2002) that employed the Precise Direct Integration 
Method (Zhong and Williams, 1994) in combination with numerical kinetic damping to solve static 
structural problems, this paper adopts Rayleigh damping as a favorable modification for dissipating 
spurious high frequency responses that oftentimes results from numerical modeling error rather than 
real structural behavior. The theoretical background of the Precise Integration Method as well as its 
implementation will be introduced in the following, and its numerical stability and accuracy are 
thoroughly discussed. 
 
 
2. PRECISE INTEGRATION METHOD FOR SOLVING LINEAR DYNAMICS 
 
2.1. Force equilibrium equation of motion 
 
If we assume that &&x , &x  and x  are acceleration, velocity and displacement vectors, respectively, 
then most structural dynamic problems of engineering interest, after spatial discretization, can be 
expressed in the following second order differential equation of motion:  
 

+ + =&& &Mx Cx Kx F  (2.1) 
 
in which, M is the system mass matrix; C is the system damping matrix; K is the system stiffness 
matrix; F is the external force or input vector applied to the system. Provided that initial conditions 

0x and 0x& are known vectors, the governing equation can be rearranged in the following mathematical 
form: 
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v is the state vector; Ac is the time-independent system matrix; Ec is the input distribution matrix 
which is time-independent in this study; F is the external force (or input) vector; I is the identity 
matrix or unit matrix. The solution can be obtained by solving Eqn. (2.2) with initial conditions and 
expressed as: 
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The discrete form of Eqn. (2.6) can be expressed as the following form if the external force F is 
linearly interpolated between two consecutive time instants: 
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On the other hand, an arbitrarily degree of nonlinear polynomial function can be used as well; thus, the 
above expressions for E0 and E1 will take a different form should the forcing function be nonlinearly 
interpolated between two consecutive time instants.  
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in which mt /Δ=τ . If m is selected as an integer power of 2 (i.e., Nm 2= ) and a fairly large N 
value is used (e.g., 20=N ), then mt /Δ=τ  will be extremely small such that truncation error 
from higher order terms of Taylor series approximation becomes negligible. With a very small τ , the 
exponential term e τcA  can be approximated by the higher order Taylor series expansion with 
satisfactory precision, taking the fourth order expansion for an example: 
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It is noted that the elements in the additional matrix Ta are very small as compared to the identity 
matrix I.  Substitution of Eqn. (2.11) back into Eqn. (2.10) gives: 
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In Eqn. (2.12), there are N matrix multiplications of the (I+Ta)2 term, which can be expanded into: 
 

( ) ( ) 22+ × + = + +a a a aI T I T I T T  (2.13) 
 
When the exponential matrix T is numerically obtained through computer computations, Eqn. (2.13) 
shall repeatedly multiply itself N times and this can be readily accomplished by a do loop computer 
routine.  In such a routine, the numerical result of 2Ta + Ta

2 is stored back into the additional matrix 
Ta each time, and Ta must be stored separately from the identity matrix I during the computations for 
better numerical accuracy instead of being directly added to the identity matrix I; otherwise, the loss 
of numerical accuracy will be significant due to round-off errors. This is because the elements in 
additional matrix Ta are very small as compared to the identity matrix I. After N matrix multiplications, 



the elements in Ta are no longer small numbers such that the addition of Ta and the identity matrix I 
will have no serious numerical round-off error. The algorithm given above is called the precise 
computation of the exponential matrix as the separate storage of I and Ta during the computation 
process can enhance the resulting numerical accuracy. 
 
2.2. Momentum equilibrium equation of motion 
 
If the system M, C and K remain constant over the time interval of integration, integrating the force 
equation of motion Eqn. (2.1) with respect to time leads to: 
 

JKwwCwM =++ &&&  (2.14) 
 
in which, ∫= dtxw &&&& ; dt∫= xw && ; dt∫= xw ; J represents the time integral of external force or the 

external momentum vector during the time interval t≤≤τ0 .  Eqn. (2.12) can be expressed in state 
space form as follows: 
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Eqn (2.13) can be solved using the Precise Integration Method with exactly the same procedure 
previously mentioned. 
 
 
3. NUMERICAL STABILITY AND ACCURACY 
 
The Precise Integration Method needs to first assume an N value in order to calculate the amplification 
matrix; thus, its numerical stability depends on the N value used for analysis. Fig. 3.1(a) shows the 
relations between spectral radius ρ and Δt/T using the fourth-order Taylor series approximation in case 
of an undamped SDoF oscillator under free vibration. An algorithm is considered as stable if the 
numerical solution for free vibration will not grow without bound for any arbitrary initial conditions 
(i.e., spectral radius 1≤ρ .) It can be seen that when the N value increases, the range of Δt/T for 
maintaining numerical stability becomes wider. Whenever numerical stability is satisfied, the values of 
spectral radius are mostly close to 1. On the other hand, the numerical accuracy of an integration 
method can be evaluated by its relative period error ( ) /T T T−  and fictitious decay of vibration 
amplitude. The latter can be represented by the so-called algorithmic damping ratio ξ . The influence 
of both factors depends on the numerical accuracy of eigenvalues calculated from the amplification 
matrix of the structural model. Assume the calculated eigenvalues of the amplification matrix for an 
undamped SDoF oscillator are: 
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in which, 1−=i , and 0≠b ; Eqn. (3.1) also implies: 
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The relative period error is defined as 



 

11 −
Δ
Δ

=−=
−

t
t

T
TT

n

n

n

n

ω
ω

ω
ω  (3.4) 

 
in which, T  is the natural period of the structural model; T  is the numerical period obtained from 
the Precise Integration Method; ωn is the circular natural frequency; nω is the circular numerical 
frequency obtained from the Precise Integration Method. 
 

  
 

Figure 3.1. Relations of spectral radius ρ vs. Δt/T (left) and ξ  vs. Δt/T (right) using the fourth-order Taylor 
series approximation in the Precise Integration Method. 

 
 

 
 

Figure 3.2. Relation between ( ) TTT /− and Δt/T using the fourth-order Taylor series approximation in the 
Precise Integration Method. 

 
Fig. 3.1(b) shows the relation between algorithmic damping ratio ξ  and Δt/T corresponding to 
different N values under the fourth-order Taylor series approximation in case of an undamped SDoF 
oscillator under free vibration. It can be seen from Fig. 3.1(b) that when N increases, the algorithmic 
damping ratio decreases. When N≧4, ξ  is approximately zero for Δt/T=0~0.5.  Fig. 3.2 shows the 
relation between the relative period error ( ) /T T T−  and Δt/T corresponding to different N values 
under the fourth-order Taylor series approximation. It can be seen from Fig. 3.2 that when N increases, 
the relative period error decreases substantially; when N≧1, the relative period error is approximately 
zero for Δt/T=0~0.5. It should be noted that N=0 corresponds to the ordinary integration algorithm 

(a)  (b)



using Taylor series expansion integrated in one single time step, which yields minimal algorithmic 
damping ratio and relative period error only for Δt/T≦0.1 when the fourth-order Taylor series 
approximation is used. It can be concluded that the Precise Integration Method yields response results 
with higher accuracy than the ordinary integration methods if the same time step size is taken in the 
analyses. In the following discussions, we will find that the combination of N=20 and the fourth-order 
Taylor series approximation as originally suggested by Zhong et al. (1996) provides an excellent 
match with its analytical counterpart. 
 
 
4. INCORPORATION OF SPURIOUS HIGH-FREQUENCY DISSIPATING CAPABILITY 
 
It is well recognized that the accuracy of natural period and mode shape estimates largely depends on 
the analytical model used for dynamic response analyses; however, even the best estimates of natural 
periods and mode shapes obtained from a sophisticated structural model may be still slightly deviated 
from its real life counterpart. As such, oftentimes a numerical model can only well represent the first 
few vibration modes of the real structure but has larger relative period errors in higher modes; the high 
frequency responses from a numerical model are most likely spurious, and more or less reduce the 
accuracy of numerical response analyses. Besides, the spurious high frequency responses may cause 
numerical instability. As the spurious high frequency response is undesirable and better be removed, a 
modification is proposed here to enable the Precise Integration Method to get rid of the influence from 
fictitious high frequency response, and keeps only the most trustworthy response from the first few 
predominant modes. To reach this goal, an additional damping coefficient matrix Ca that is linearly 
proportional to system stiffness matrix K and time step size Δt is incorporated into the Precise 
Integration Method as follows: 
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in which, ′C  is the modified system damping coefficient matrix; C  is the original system damping 
coefficient matrix; α is the damping modification factor. An appropriate value is specified for damping 
modification factor α to dissipate undesirable spurious high frequency response. The eigenvalues of 
the amplification matrix for an SDoF system after incorporating numerical damping can be expressed 
as follows: 
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in which 1* ≥ξ  indicates that the original SDoF system has been changed to become critically or 
overly damped by the additional numerical damping, and therefore no longer represents a vibratory 
system. Please note that this mistake is not acceptable and should be avoided. The modified system 
damping ratio after incorporating Eqn. (4.1) thus takes the following form: 
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Recall that spectral radius )max( 21 , λλρ = . If we further assume the SDoF system is free of 
damping (i.e., ξ = 0) for simplicity, then substitution of Eqn. (4.4) into Eqns. (4.2) and (4.3) will yield 
the following: 
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Fig. 4.1(a) takes an undamped SDoF oscillator under free vibration as an example, and shows the 
relation between spectral radius and Δt/T corresponding to different α values. Since the combination of 
N=20 and the fourth-order Taylor series approximation as originally suggested by Zhong et al. (1996) 
provides a good match with the analytical exact solution from Eqns. (4.5)-(4.6), only the numerical 
results are plotted in Fig. 4.1 for better graphical readability. If the cut-off frequency for suitable 
numerical dissipation and time step size Δt are both decided, then an appropriate α value can be 
readily determined using Eqn. (4.5) or Fig. 4.1(a) to help filter out fictitious high frequency response. 
The α value can be then fed back into the modified system matrix cA′  to dissipate undesirable high 
frequency responses. Fig. 4.1(a) suggests that a larger time step would pair with a smaller damping 
modification factor α while a smaller time step would pair with a larger α value in order to have the 
same spurious high frequency dissipation effects. A much smaller α value than Eqn. (4.5) or Fig. 4.1(a) 
suggests may lead to insufficient dissipation capacity, while a much larger α value may overly damp 
out trustworthy low frequency response from the first few predominant vibration modes.  The dashed 
portion of the curves in Fig. 4.1(a) represents 1* ≥ξ  and will erroneously transform an SDoF 
oscillator (i.e., under-damped) into a non-vibratory system (i.e., critically or overly damped) and 
therefore should not be used. 
 

  
 

Figure 4.1. Relations of spectral radius ρ vs. Δt/T (left) and ( ) TTT /− vs. Δt/T (right) using the fourth-order 
Taylor series approximation and N=20 in the Precise Integration Method. 

 
The relation between the relative period error and Δt/T under different α values can be shown as Fig. 
4.1(b).  The curves in Fig. 4.1(b) also agree exceptionally well with the analytical results calculated 
from Eqn. (3.4).  As such, only the numerical results are plotted in Fig. 4.1(b) for better graphical 
readability. Fig. 4.1(b) suggests that when α value increases, relative period error also increases. It is 
therefore suggested that Δt be as large as possible (a larger Δt will not significantly affect the period 
error too much due to the superior performance from the power-of-two algorithm and the fourth-order 
Taylor approximation and can help alleviate computational effort) and then select a suitable α value to 
dissipate fictitious response as long as numerical stability and accuracy requirement (usually, 
Δt/T≦0.1) are both satisfied. Ultimately, if the values of α and tΔ  are carefully selected, the 
spurious high frequency response from modeling error can be successfully filtered out, and accurate 
response prediction from the first few predominant modes can be assured.  The excellent match 
between numerical results and exact solutions in Fig. 4.1 facilitates an equation-based prediction of 
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resulting numerical characteristics when a combination of N=20 and the fourth-order Taylor series 
approximation is employed in the Precise Integration Method.  The required computational effort of a 
numerical approach is always a major concern of its users.  In case of DOFs = 1000, a 17.4% 
increase in computational time is observed if N value increases from 0 to 20, while the computational 
time grows exponentially with the number of degrees of freedom due to the state space approach 
employed. In passing, it is mentioned that the additional computational effort induced by the 
power-of-two algorithm is marginal considering the significant improvement in numerical accuracy. 
 
 
5. ISSUE OF SPURIOUS RESONANCE UNDER FORCED VIBRATIONS  
 
The computational performance of a time integration method for solving linear dynamics problems is 
usually evaluated with reference to its capability in accurately obtaining the homogeneous part of the 
solution and numerical stability; however, the influence of external loading has not been studied as 
widely, and usually limited to the investigation of local truncation error. Cannillo and Mancuso (2000, 
2002) performed accuracy analysis on time integration methods for classically damped MDoF linear 
dynamic oscillating systems using the transfer function that is expressed in terms of an amplification 
matrix and a loading vector under the assumption of stationary disturbance. The MDoF oscillating 
system usually can be decomposed into a group of SDoF oscillators using modal decomposition if a 
classical damping is assumed. When compared with the exact transfer function, numerical accuracy 
and spurious resonance resulted from a time integration method due to the influence of the external 
loading can be then evaluated. As a stationary external excitation can always be represented by a 
superposition of sinusoidal waveforms using exponential Fourier series, the transfer function of an 
viscously damped linear SDoF oscillating system between a stationary acceleration excitation 

)exp()( titf Ω= and the resulted system displacement response can be then analytically expressed in 
the following form according to random vibration theory: 
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On the other hand, all numerical time integration methods have their own numerically resulted transfer 
functions that may deviate from the exact form of Eqn. (5.1). If we assume the relation between the 
external loading and the response vector containing displacement and velocity at a particular time 
instant tn is of the following vector form: 
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xH  and xH &  correspond to the transfer functions for displacement and velocity response of the 
SDoF structural system, respectively. If we substitute Eqn. (5.2) into Eqn. (2.7), the following 
expression for transfer function is then obtained from the explicit recursive equation of the Precise 
Integration Method: 
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Eqn. (5.3) can be employed to calculate the transfer functions for the Precise Integration Method. 
Similarly, both the transfer functions resulted from the original Newmark’s and the central difference 
methods can be obtained following the same procedure. If the forcing-to-system frequency ratio ν is 
defined as the external harmonic excitation frequency Ω divided by the system frequency ωn, then the 
norm of the numerical transfer function normalized with respect to that of the exact transfer function 



denoted by xx HH /  can be employed to evaluate numerical accuracy and spurious resonance for 

numerical integration methods. It should be noted that in case of 1/ =xx HH , the numerical time 
integration method yields perfectly accurate result as the analytical exact solution. Fig. 5.1 compares 
numerical accuracy and spurious resonance of several integration methods, including the Precise 
Integration Method, Newmark’s method and the central difference method, within 5.20 ≤≤ν  by 
assuming an undamped SDoF system of a natural circular frequency ωn=2 rad/sec (i.e., natural period 
T = 3.14sec).  All three methods use a time step tΔ =0.314sec =0.1*T.  The parameters γ = 0.5 and 
β = 0.25 are assumed in the original Newmarks’ method, corresponding to the average acceleration 
method. When the forcing-to-system frequency ratio ν is much smaller than 1 (in particular, smaller 
than 0.7), all three integration methods yield response fairly close to the exact solution; however, both 
the central difference and the original Newmark’s (average acceleration) methods show unfavorable 
spurious resonance with abrupt vertical spikes when the forcing-to-system frequency ratio ν is in the 
vicinity of 1. When the forcing-to-system frequency ratio ν is larger than the value causing spurious 
resonance in the central difference and the original Newmark’s methods, the numerical-to-exact 
transfer function ratio starts to deviate away from 1.  For larger time step sizes tested in this study, 
the spurious resonance problem becomes catastrophically worse, and can result in a large half-power 
bandwidth at spurious resonance such that the resulting numerical accuracy substantially degrades and 
becomes unacceptable. The accuracy of the Precise Integration Method also degrades if an excessively 
large time step is taken (e.g., tΔ >0.3*T). Fig. 5.2(a) plots the numerical accuracy of the Precise 
Integration Method with the forcing function linearly interpolated within an integration time step. The 
curves shown cover a good spectrum of tΔ /T values (1/100, 1/40, 1/20, and 1/10), corresponding to 
ωn = 0.2, 0.5, 1, and 2 rad/sec. The parametric study indicates that although spurious resonance does 
not exist in the Precise Integration Method, its overall numerical accuracy degrades when the 
structural and/or forcing frequency grows higher.  Fig. 5.2(b) reports the advantage of employing a 
second-degree polynomial in describing the variation of loading momentum within integration time 
steps, which shows substantially improved accuracy. Numerical example study shows that the use of 
nonlinear polynomials can further loosen the constraint of time step size selection but still keeps the 
desired level of numerical accuracy at the same time. 
 

 
Figure 5.1. xx HH /  vs. ν relations obtained from the central difference, the original Newmark’s and the 

Precise Integration Methods (ξ = 0, Δt =0.314sec= 0.1*T). 
 
 
7. CONCLUSIONS  
 
An explicit time integration method capable of dissipating spurious high frequency responses is 
proposed in the study, which is a modified version of the original Precise Integration Method. From 
numerical stability and accuracy analyses, it is found that when the N value reaches a certain threshold 
(e.g., N≧20) and the fourth-order Taylor series approximation is employed, the Precise Integration 
Method becomes almost unconditionally stable over a wide range of frequencies and its accuracy is 



better than most commonly used integration methods in the engineering community. The 
power-of-two algorithm and Taylor series expansion are both well known mathematical concept in 
textbooks, so the authors trust that its end users will be able to get familiar with the approach more 
easily compared with other state-of-the-art methods having been proposed in the literature, while the 
Precise Integration Method still provides competitively excellent numerical stability and accuracy. The 
next mission of the study in the near future is to take a step further to investigate the possibility of 
extending to materially nonlinear systems and carefully evaluate its numerical performance. 
 

  
 

Figure 5.2. xx HH /  vs. ν relations obtained from force (left) and momentum (right) equilibrium of the 

Precise Integration Method under various structural natural frequencies (Δt=0.314sec, ωn=1~5 rad/sec). 
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