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SUMMARY: 

We present a new model that can be used to construct the response spectra of near-fault ground motions having 

pulse-like waveforms. The model is calibrated by using a large set of recorded accelerograms. The shape of the 

pseudo-velocity spectrum (PSV) is modelled as a continuous function of the single-degree-of-freedom (SDOF) 

natural period. Magnitude dependence of spectral shapes is built into the model, which also includes parameters 

accounting for effects of viscous damping. An empirical equation for peak ground velocity (PGV) is provided to 

scale the pseudo-velocity spectral shapes, obtaining the absolute PSV, which is easily converted to the more 

commonly used pseudo-acceleration spectrum (PSA). A framework for quantifying the uncertainties in the PGV, 

as well as the spectral shapes, is presented in the form of simple equations. Finally, equations to estimate force 

reduction factors of elastoplastic systems for several levels of target displacement ductilities are also presented. 
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1. I(TRODUCTIO( 

 

Near-fault ground motions are known to be a potential cause of severe damage to engineering 

structures. They usually carry a strong long-period pulse in their velocity records. Directivity effects 

(see Somerville et al., 1997) and permanent displacement effects (see Abrahamson, 2000) have been 

identified as the most common features of near-fault ground motions. This study is focused on 

forward-directivity effects in the near-fault region and characterization of elastic as well as inelastic 

response spectra of elastic-perfectly-plastic single-degree-of-freedom (SDOF) systems. 

  

The most important features of these ground motions are considered as the amplitude and frequency of 

the dominant velocity pulse contained in their time series. The amplitude of the pulse is representative 

of the peak ground velocity. If the pulse were a simple harmonic with infinite duration, the PSV would 

exhibit a peak at a SDOF period exactly equal to the pulse period. However, near-fault velocity pulses 

are of finite duration, and the period at which PSV is the maximum is not exactly equal to the pulse 

period, but yet, in most cases, very close to it. In this work we quantify the amplitude of ground 

motion by the PGV, and its frequency content is characterized by a predominant period, which is, in 

this work, defined as the period where 5% damped linear-elastic PSV reaches its peak value. If more 

than one peaks of comparable amplitude exist, then the longest period is considered. 

  

We present robust empirical equations to estimate PGV and predominant period from earthquake size, 

source-to-site distance, and other relevant parameters. We then present analytical equations of PGV-

normalized PSV (termed here as spectral shapes) as a continuous function of the SDOF natural period 

and its level of viscous damping. Finally, characteristics of inelastic response are studied, and 

equations relating strength reduction factors to displacement ductility of elasto-plastic SDOF systems 



are presented. The models presented here are calibrated by using 93 accelerograms obtained from 29 

worldwide earthquakes. More information on the data can be found in Rupakhety et al. (2011). 

 

 

2. RELATIO(SHIP BETWEE( PREDOMI(A(T PERIOD A(D SEISMIC MOME(T 

 

Predominant period of ground motion, denoted 
d
T is found to scale linearly with seismic moment, and 

its corresponding relationship between moment magnitude (
w

M ) and can hence be modeled by the 

following expression 

 

( )log d wT Mα β ε= + +  (2.1) 

 

where α and β  are model coefficients determined by regression analysis and ε  is residual error 
treated as a Gaussian-distributed random variable with zero mean and standard deviation σ . The 
model of Eqn. 2.1 was calibrated by using least squares regression. Further details regarding the data 

used in regression can be found in Rupakhety et al. (2011). The regression parameters were found to 

be 0.47α = , 2.87β = − , and 0.18σ = . The regression line and data points are presented in Fig. 1. The 

mean value predicted by regression is shown with the solid line, while dashed lines correspond to 

mean 2σ± levels. The distribution of ε  is compared with a standard normal distribution in the small 
inset in the top-left corner of Fig. 1. 

  

 
 

Figure 1. Scaling of 
d
T  with

w
M . The Solid line is the mean value of a least squares line fitted to the data, while 

the dashed lines correspond to mean 2σ± . Different markers are used for strike-slip (SS), reverse (RV), normal 

(NM), and oblique (OB) faulting mechanisms as indicated in the legend. 

 

 

3. ATTE(UATIO( EQUATIO( FOR PGV 

 

The functional form adopted for the attenuation equation is  
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 (3.1) 

 

where ijPGV  is the PGV (in m/s) of the j th recording from the i th event; wM is the moment 

magnitude of event i ; R  is the distance (measured in km) of the jth recording obtained from the ith 

event; a , b , c , d , e , and satM  are regression parameters; and iη  and ijε  represent inter- and intra-



event variations. The error terms iη  and ijε  are assumed to be independent, normally-distributed 
random variables with variances 2

1σ  and 2

2σ  , respectively. The total standard deviation associated with 

estimated PGV can be computed from the following equation. 

 
2 2

1 2tσ σ σ= +  (3.2) 

 

For distance measure R , we use Joyner-Boore distance ( JBr ) when rupture model is available and 

epicentral distance ( epir ) otherwise. Furthermore, we select only those stations within 30 km from the 

source. More information regarding the data used in regression analysis can be found in Rupakhety et 

al. (2011). The regression parameters were calibrated by using the maximum likelihood method of 

Joyner and Boore (1993). Regression constants and associated values of standard deviations are shown 

in Table 1 

 
Table 1. Regression coefficients for the model of Eqn. 3.1. 

a  b  c  d  e  satM
 1σ

 2σ
 tσ

 
-5.17 1.98 -0.14 -0.10 0.75 7.0 0.081 0.135 0.16 

 

In Fig. 2 we compare the model of Eqn. 3.1 and the associated parameters of Table 1 with models 

proposed by Bray and Rodriguez-Marek (2004), Somerville (1998), Alavi and Krawinkler (2000), and 

Halldórsson et al. (2011), hereafter called as B&R-M04, S98, A&K00, HM&P10, respectively. These 

authors use the closest distance to rupture as their distance metric. For comparing their model with 

ours, we assume a vertical strike-slip event. The thick black line in Fig. 2 corresponds to the mean 

prediction of the proposed model, while upper and lower fractals with 2 standard deviations are shown 

by black dashed lines. Circles indicate observed values of PGV. PGV corresponding to all magnitudes 

are shown, and the model predictions are computed at magnitude 6.6, which is also the mean 

magnitude of our data. The mean prediction of B&R-M04 is shown with the solid blue line. The 

dashed red line, the dashed blue line, and the solid red line represent mean predictions of S98, 

A&K00, and HM&P10, respectively. We note that the magnitude scaling parameters of A&K00 and 

S98 are high, and our data do not support such a strong magnitude dependence of PGV. On the other 

hand, magnitude scaling is zero in HM&P10. The attenuation of PGV above distances greater than 7 

km is very fast in the Model of Bray and Rodriguez-Marek. Fast attenuation in HM&P10's model is 

related to their functional form. In their model, PGV attenuates exponentially with distance. Such 

exponential attenuation is not supported by our data, as shown in Fig. 2. 

 

 
 

Figure 2. Comparison of the model of Eqn. 3.1 with observed data (circles) and the models of other authors as 



indicated in the legend (see text above for legend keys). 

 

 

4. ELASTIC RESPO(SE SPECTRA 

 

Accelerograms from large earthquakes in the recent past have shown that response spectra of near-

fault ground motions, mainly of those affected by forward-directivity effects, are different from those 

of far-fault ones. One of the characteristic differences between the two is the narrow-banded spectral 

structure of the former. Response spectra of forward-directivity-affected near-fault ground motion 

exhibit spectral peak values in a narrow band of periods near the predominant period of ground 

motion. Predominant period increases with increasing earthquake magnitude, and thus the response 

spectra are strongly influenced by earthquake magnitude. The differences in the response of structures 

to near-fault and far-fault ground motions imply that design spectra, derived from more far-fault 

accelerograms than near-fault ones, are biased. They are not capable of capturing the impulsive nature 

of near-fault ground motion and often lead to unreliable estimates of seismic action on engineering 

structures located near an earthquake fault. Therefore, it is essential to develop design spectra 

specifically suitable for ground motion in near-fault area. We propose response spectral model 

applicable strictly to near-fault ground motion exhibiting forward-directivity effects. The proposed 

model is based on recorded accelerograms within 30 km from the fault generated by earthquakes 

ranging in magnitude between 5.5 and 7.6. This model should not be extrapolated in terms of 

earthquake magnitude or source to site distance. The PSV normalized by PGV is termed as spectral 

shape, and represented by the equation 
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 (4.1) 

 

where nT  is the undamped natural period of the SDOF system; 1
I  and mD  are model parameters that 

depend on earthquake magnitude and viscous damping ratio of the system and dT  is the average 

predominant period of ground motion given by Eqn. 2.1. To incorporate the magnitude dependence of 

spectral shapes, we divided the available ground motion data into several magnitude groups and 

calibrated the model for each group separately. Further details regarding the calibration process can be 

found in Rupakhety et al. (2011). The calibrated model parameters are presented in Table 2. The 

model parameters are expressed as a function of the damping ratio (ζ ) expressed as a percentage of 
the critical damping ratio.  

 

The comparisons of the simulated spectral shapes with those computed from recorded accelerograms 

are shown in Fig. 3, and Fig. 4, for 2% and 20% damping, respectively. The grey and the dark lines in 

these figures represent the spectral shapes corresponding to recorded data and the proposed model, 

respectively. The results indicate that the proposed model accurately simulates the spectral shapes of 

recorded near-fault accelerograms for a wide range of damping ratios. 

 

 

 

 

 

 

 

 



Table 2. Parameters of Eqn. 4.1 for different magnitude ranges and damping ratios 

Magnitude range 1
I  mD  

5.5 6.0wM≤ ≤  0.50.320ζ −
 1.54 0.39ζ +  

6.0 6.3wM≤ ≤  0.50.239ζ −
 1.73 0.44ζ +  

6.3 6.6wM≤ ≤  0.50.211ζ −
 2.41 0.47ζ +  

6.6 6.8wM≤ ≤  0.50.204ζ −
 2.82 0.50ζ +  

6.8 7.3wM≤ ≤  0.50.283ζ −
 4.18 0.58ζ +  

7.3 7.6wM≤ ≤  0.50.242ζ −
 3.38 0.59ζ +  

 

 

 
 

Figure 3. Comparison of 2% damped mean spectral shapes with the ones simulated from Eqn. 4.1 and Table 2. 

 

.  



 
 

Figure 4. Comparison of 20% damped mean spectral shapes with the ones simulated from Eqn. 4.1 and Table 2. 

 

The standard deviations of spectral shapes in base 10 logarithmic scale are denoted here as log nPSVσ . 

The variation of these standard deviations with natural period of SDOF system is shown in Fig. 5. 

Note that the nT  axis is in logarithmic scale. The figure clearly shows that standard deviation reduces 

as the damping level increases. This is because as damping ratio increases, spectral shapes become 

smoother. The decrease in the standard deviation of residuals with increasing damping level is the 

largest in the high-frequency region. We found that uncertainty in spectral shapes predicted by our 

model is smallest in the range 0.2 4ns T s< < .This is, in most cases, the period range of greatest interest 

for engineering design. We also notice that the variation of log nPSVσ  with nT  can be approximated by a 

simple curve as represented by the black line in Fig. 6 for 5% damped systems. The equation related to 

this approximation is the following. 

 

( )
log

0.18 0.04sin 2.9 log 1.7     if  1.73 log 1.0

0.16                                         if  log 1.73
n

n n

PSV

n

T T

T
σ

 − − − < <   = 
≤ −

 (4.2) 

 

We suggest this approximation function, which is similar to the computed values of log nPSVσ , to avoid a 

long list of log nPSVσ  at discrete nT  values. Equation 4.2 corresponds to 5%-damped systems. For higher 

levels of damping, the standard deviations are smaller. On average it was found that standard deviation 

for damping ratios of 0.02, 0.07, 0.08, 0.1, 0.12, 0.14, 0.17, and 0.2 were 1.06, 0.98, 0.97, 0.95, 0.93, 

0.92, 0.90, and 0.88 times that for 5% damped system, respectively. In order to compute the standard 

deviation of PSV from log nPSVσ  and logPGVσ , the correlation between nPSV  and PGV  need to be 

established. The computed coefficients of these correlation for our data was found to be negative (-0.2 

to -0.3) between SDOF periods of 0.01s and 1s beyond which it increased to 0.3 at a SDOF period of 

2s, and then decreased steadily to 0 at about 10s. Because these coefficients are small, nPSV  and PGV  

can be assumed to be uncorrelated, and the uncertainty in PSV can be approximated as



( ) ( )2 2

log log lognPSV PSV PGVσ σ σ= + . 

 

 
 

Figure 5. Standard deviation of residuals of spectral shapes for three different levels of viscous damping. 

 

 
 

Figure 6. Standard deviation of residuals for 5% damped spectral shapes as a function of nT . 

 

 

5. I(ELASTIC RESPO(SE SPECTRA A(D FORCE REDUCTIO( FACTORS 

 

Force-based design of engineering structures for earthquake resistance generally requires inelastic 

response spectra of SDOF systems to estimate design lateral strengths. Inelastic response spectra for 

earthquake ground motion are typically constructed by reducing elastic response spectra by the so-

called force reduction factor or structural behaviour factor. Hysteretic energy dissipation during 

inelastic deformation is a major contributor to these reduction factors apart from damping and 

structural over-strength. The reduction in design forces due to hysteretic energy dissipation ( )Rµ  is 

defined as the ratio of elastic strength demand to inelastic strength demand required to maintain a 

displacement ductility ( )µ less than or equal to a pre-determined target ductility ratio when subjected 



to the same excitation. We present relationship between force reduction factor and displacement 

ductility of elastic-perfectly-plastic system in the form of following equation. 

 

[ ] ( )1 1nR Tµ µ ψ= − +  (5.1) 
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γ τ
−

= +  (5.2) 

In Eqns. 5.1 and 5.2, the constants γ , and τ  are functions of µ  and were accordingly calibrated using 
mean reduction factors computed from recorded ground motions. The reduction factors given by these 

equations satisfy the condition 1Rµ →  as 0nT → . As nT → ∞ , the force reduction factor given by 
our equations approaches µ . The constants of Eqns. 5.1 and 5.2 are presented in Table 3. Fig. 7 
compares mean force reduction factors with the proposed equations. Note that the match between the 

average force reduction factors and the approximate ones given by Eqns. 5.1 and 5.2 shows some 

differences at long periods. Considering the uncertainty in long-period response spectral ordinates, the 

calibration of the constants were judged based on structural periods up to about 4s. Even though force 

reduction factors are presented in Fig. 7 up to structural periods of 10 s, it should be noted that the 

model is constrained to follow the equal displacement rule at long periods. 

 

Table 3. Parameters of Eqns. 6 and 7 describing the nR Tµ µ− − relationship 

µ  γ  τ  
1.5 0.50 6.00 

2.0 1.00 4.50 

3.0 2.00 3.00 

4.0 2.50 2.00 

5.0 3.00 1.75 

6.0 3.25 1.50 

 

 

 
 

Figure 7. Comparison of mean force reduction factors (solid lines) with the idealized ones (dashed lines) given 

by Eqns. 5.1 and 5.2 for displacement ductilities of 1.5, 2, 3, 4, 5, and 6. 

 

 

 



6. CO(CLUSIO(S 

 

We present quantitative descriptions of near-fault ground motions in terms of their amplitude and 

frequency content based on recorded accelerograms. The period where 5% damped pseudo-spectral 

velocity contains a clear peak is proposed as a measure of predominant period ( )dT of forward-

directivity affected near-fault ground motions. The main advantage of this definition is that, unlike 

pulse period as defined by various authors, this measure is unambiguous and is easily calculated. A 

robust equation is developed to relate dT  to earthquake magnitude. The relationship between dT  and 

wM  is similar to scaling relations between pulse period and magnitude proposed by different 

researchers in the past 

 

The amplitude of near-fault ground motions is quantified in terms of peak ground velocity (PGV), and 

present empirical equations for estimating it as a function of earthquake magnitude and source-to-site 

distance. However, we found that the available data are not sufficient to constrain a reliable model for 

the effects of source mechanism and local site conditions. The dependence of PGV on moment 

magnitude is observed to be weak.  

 

Properties of elastic response spectra of forward-directivity-affected near-fault ground motion are 

discussed in depth. A simple model is proposed to estimate mean spectral shapes of SDOF response to 

such ground motions. The proposed analytical model is a continuous function of the undamped natural 

period of SDOF oscillators, and its parameters are magnitude dependent. The model is calibrated by 

using recorded ground motions. The dependence of the parameters of the proposed model on 

earthquake size is investigated, constraining their relationship in a step-by-step manner. It was found 

that several parameters of the model can be effectively expressed in terms of earthquake size, thereby 

reducing the number of free variables. 

 

In addition, the effects of viscous damping ratio on spectral shapes were thoroughly examined. By 

studying spectral shapes for different levels of viscous damping, we were able to express the 

parameters of the spectral shape model as a continuous function of damping ratio. This avoids the use 

of so-called damping correction factors commonly used to derive response spectra for various levels of 

damping from that corresponding to 5% of critical damping. The proposed model is found to have 

small uncertainties in the period range of common engineering structures, whereas uncertainties 

concerned with very high frequencies are larger. The standard deviation of the residuals of the 

proposed model was found to be smaller for highly damped systems. The proposed model can be used 

with any reliable attenuation model of PGV to estimate the elastic response spectra for forward-

directivity ground motion in the near-fault area. Finally, constant-ductility spectra of elasto-plastic 

SDOF systems are studied for ductility ratios ranging from 1.5 to 6. An approximate equation to 

estimate force reduction factors as a function of displacement ductility and SDOF period is proposed. 
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