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SUMMARY:  

This paper extends the Tail-Equivalent Linearization Method, TELM, to the case of a nonlinear structure 

subjected to multiple stochastic excitations. Following the original formulation, Fujumura Der Kiureghian 

(2007-09), the method employs a discrete representation of the stochastic inputs and the first-order reliability 

method, FORM. Each component of the Gaussian excitation is expressed as a linear function of standard normal 

random variables. For a specified response threshold of the nonlinear system, the tail equivalent linear system, 

TELS, is defined in the standard normal space by matching the “design point” of the equivalent linear and 

nonlinear responses. This leads to the identification of the TELS in terms of a unit-impulse response function or, 

equivalently, a frequency response function for each component of the input excitation. The method is 

demonstrated through its application to an asymmetric one story building with non-degrading hysteretic 

behavior. The results obtained by TELM are in close agreement with Monte Carlo simulation results. 
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1.  INTRODUCTION  

 

Safety analysis of structures subjected to stochastic excitation, such as earthquake, wind or wave 

loading, usually requires consideration of nonlinear behaviour. Furthermore, for highly reliable 

structures, the interest is in the tail region of the response distribution. The conventional equivalent 

linearization method, ELM, which is often used for such problems, is based on the assumption of 

Gaussian response, which may not be a good approximation for the tail region. The TELM is a recent 

alternative based on the First-Order Reliability Method, FORM, which aims to solve this class of 

problems with good accuracy in the tail region. 

 

In TELM, the input process is discretized and represented by a set of standard normal random 

variables. Each response threshold defines a limit state surface with the “design point” being the point 

on the surface that is nearest to the origin. Linearization of the limit-state surface at this point uniquely 

and non-parametrically defines a linear system, denoted as Tail-Equivalent Linear System, TELS. The 

tail probability of the TELS response for the specified threshold is equal to the first-order 

approximation of the tail probability of the nonlinear system response for the same threshold. 
 

Once the TELS is defined for a specific response threshold, methods of linear random vibration 

analysis are used to compute various response statistics, such as the mean crossing rate and tail 

probabilities of local and extreme peaks. The method has been developed for application in both time, 

Fujimura and Der Kiureghian (2007-09), and frequency domain, Garrè and Der Kiureghian (2010), 

and it has been applied for inelastic structures as well as structures experiencing geometric 

nonlinearities. 

 

This paper describes an extension of TELM for multi-component stochastic excitations. It is shown 

that the concept of a single TELS for a given threshold also applies in the case of multiple excitations. 

The specific case of an inelastic structure subjected to two horizontal ground motion components is 



developed. For this purpose, use is made of an existing inelastic constitutive model, for which an 

efficient method is developed for computing the response gradient that is needed for finding the design 

point. An example application demonstrates the accuracy of TELM by comparison with “exact” 

results obtained by Monte Carlo simulation. 

 

 

2. STOCHASTIC REPRESENTATION OF INPUT EXCITATIONS 

 

The stochastic excitation in TELM analysis is represented by a linear combination of a set of basis 

functions                     with independent standard normal random coefficients      
              

 : 

 

           (2.1) 

 

In the case of multiple components of excitation, assuming statistical independence between the 

components, each component is modelled as Eqn. 2.1 and collected in a vector form: 

 

      
       

 
       

   
        

 
        

  (2.2) 

 

Originally, TELM was developed in the time domain, using filtered white-noise representation of the 

input excitation, Fujimura and Der Kiureghian (2007). Following this formulation, the jth component 

of the excitation may be defined as 

 

                                                 
 

 
 (2.3) 

 

where   denotes convolution,      is the unit step function,         is the white-noise process and 

          is the impulse response function, IRF, of a stable linear filter. TELM implementation of 

Eqn.2.3 requires discretization of the time axis. For a selected time step    and initial time      , we 

approximate the white noise         with the following rectangular wave process 

 

         
 

  
                                      
  
    

  (2.4) 

 
The resulting process is band-limited at frequency         [rad/s] and, for a given white noise 

spectral density     , it has variance                . Defining the standard normal random 

variables as    
   

      , Eqn. 2.4 can be written in the form 

 

                  (2.5) 
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                    , otherwise  (2.6) 

 

The discrete version of Eqn. 2.3,      , is obtained by replacing         with           
 

                                          (2.7) 

   
                        

  
    

,                       (2.8)  

                   ,           (2.9) 

 
An alternative to the above formulation is to perform the discretization in the frequency domain. 

Following Shinozuka (1975-91) and Deodatis (1991), the basis functions    
       are selected as the 

sine and cosine functions. The representation is the canonical Fourier series with random coefficients. 



For a selected frequency discretization step     and given         with            Eqn. 2.7 
is written as: 
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        (2.11)  
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                    (2.13) 

 
In contrast to the time domain discretization that leads to a band limited process, the frequency domain 

discretization leads to a periodic process. For a given   , Eqn.2.10 produces a process having the 

period        .The above discretization was first employed in TELM analysis by Garrè and Der 

Kiureghian (2009) for a marine application involving nonlinear loading and elastic material. In this 

paper we use this formulation while including inelasticity in the material behaviour. 

 

 

3. TELM REVIEW 

 

3.1. Time domain TELM  

 

The governing equation of a stable system subject to stochastic input can be written as 

 
              (3.1) 

 
where         is a differential operator. If the system is linear, the response can be obtained by 

convolving its IRF with the input excitation:  

 

                                              
 

 
 
    (3.2) 

 

where the      is the IRF of the linear system and                      
 

 
 If the system is 

nonlinear, a numerical solution can be used to compute the response    ). Given the representation in  

Eqn. 2.1, the response    ) is either an implicit or explicit function of standard normal random 

variables, i.e.       . Given a response threshold of interest  , at a specific time   , the tail probability 

is defined as               . Reliability theory is then used to compute the tail probability by 

defining a limit state function                     and rewriting the probability statement 

as                   . In particular TELM employs the first order reliability method, FORM, in 

which a first order approximation of the probability is computed by defining in the standard normal 

space the so-called design point    which belongs to the limit state surface             and has 

minimum distance from the origin. This distance is known as the reliability index. The significance of 

this point is described by Koo, Der Kiureghian, and Fujimura (2005). If the system is linear the limit 

state surface is an hyperplane with gradient      and the design point and the reliability index are 

given in closed form as:  

 

         
 

         
     

 

         
   (3.3) 

 

        
 

         
 (3.4) 

 

moreover the gradient       can be written explicitly in terms of a given design point:   

 

      
 

      
   

      
 (3.5) 

 



and the tail probability has the simple solution  

 

                    (3.6) 

 

where     is the standard normal cumulative probability function. In the more general nonlinear case, 

first the design point    is computed with a constrained optimization algorithm. The limit-state 

function is then expanded in Taylor series at the design point: 

 
        

            
            

                 (3.7) 

 

The first order approximation of                   is then obtained by keeping the linear terms. This 

corresponds to approximating the limit-state surface by its tangent hyperplane at the design point. Let 

     denoting the gradient vector of this hyperplane. Then, for known      , the set of equations  

 

         
 
                   (3.8) 

 

can be solved for the IRF      of the TELS represented by the tangent hyperplane. Once the IRF of 

the TELS is obtained, methods of linear random vibration are used to compute the statistics of the 

response for the specific threshold,  .  

 

3.2. Frequency domain TELM  

 

The governing equation of a stable linear system in frequency-domain can be written as 

 
                          (3.9) 

               (3.10)   

 

where     is the classical Fourier transform operator and       and       are the Fourier transforms of 

the response and the input excitation respectively. The steady-state response is obtained as 

 

                                    (3.11)    

 
where                   is frequency response function, FRF, of the system. Given the stochastic 

representation Eqn. 2.10, using Eqn. 3.11, the steady state response of a linear system is obtained in 

the time domain as:  

 

                        
 
                                         (3.12) 

                                 
        (3.13)  

                        (3.14) 

                        (3.15)    

 
in which           and         and    respectively represent the modulus and the phase of the 

FRF of the linear system. It easy to show, Garrè and Der Kiureghian (2009), that the following 

relationships exist between the elements of the gradient vector       and the FRF: 

 

                 
         

     (3.16) 

                         (3.17)     

 
Given a general nonlinear system and a stochastic input described by (2.10), the design point   , is 

first determined and the gradient vector of the tangent plane,      , is computed from Eqn. 3.5. The 

latter in conjunction with Eqn. 3.16 and Eqn. 3.17 uniquely defines the FRF of the TELS. Once the 

FRF is determined, methods of linear random vibration are used to compute the statistic of the 

nonlinear response for the specified threshold  .  



4. MULTI-COMPONENT TELM ANALYSIS  

 

In the case of a multi-component excitation, a specific response quantity of a stable linear system in 

the time-domain is given by superposition over the input components 

 

                            
    (4.1) 

                         
          

         
 

 
 
   

 
    (4.2) 

 

where                         and                          
 
. Similarly, in the frequency 

domain the response is given by:  

 

                          
    (4.3) 

 
Given the inputs described in Eqn. 2.10, the steady-state response of the linear system is given by:  

  

         
    

                    
       

          
        

           
    (4.4) 

 

where                                          and                                     

          . In the multi-component excitation case, both the vectors of basis functions      and     , 
as well as the standard normal vector  , are partitioned in   sub-vectors. For a general nonlinear 

system, the usual constrained optimization algorithm is employed to compute the complete design 

point. Then partition     represents the design point for the jth input component. Given the complete 

design point   , the complete      can be computed from Eqn. 3.6 in the standard normal space of 

dimension    , where   stands for the number of random variables for each discretized excitation 

(assuming this number to be the same). In the time domain context, the IRF for the jth input 

component is computed by solving: 

 

            
 
     

            
          for each     (4.5) 

 

In the frequency domain, the FRF associated with the jth input component is: 

 

       
          

   
           

   
        

   
  (4.6) 

           
   

        
   

      (4.7)     

 

With the IRF or FRF for the response quantity of interest with respect to each input excitation 

component determined, methods of linear random vibration are used to compute response statistics of 

interest for the specified threshold,   . 

 
 
5. NUMERICAL EXAMPLE 

 

An asymmetric three degree of freedom, one story bay frame system with non-degrading hysteretic 

structural members is considered. The in-plane inelastic behaviour of each frames is described through 

a non-degrading Bouc-Wen model, which is governed by the following set of differential equations: 
 

                                          (5.1) 

                                                         (5.2)     

 

where    is the local displacement of the frame, the parameter   controls the degree of hysteresis, 



and      follows the Bouc-Wen hysteresis law (4.2). Frames are assumed to have negligible out of-

plane stiffness. The geometry and material properties of the structural system are listed in Table 5.1. 

The excitation is a bi-directional base motion described by              
       and         

     
      , where    

   
    and    

   
    are statistically independent components of white noise in 1 

and 2 directions having spectral density              Given a response quantity of interest     , 

e.g. the horizontal displacement of frame 1,    
    , first the limit state function for a specific threshold 

  is computed with Newmark integration scheme applied to the governing equation  

 

                              (5.1)    

 

The mass matrix,  , the damping matrix,  , and the restoring force,    , are constructed from the 

local frame properties while      and      are the vectors storing the global response and the global 

excitation. The gradient is computed by the DDM algorithm proposed by Zhang and Der Kiureghian 

(1993). Once the complete design point is obtained, the TELS is identified in the manner described 

earlier. In the following analysis, the response quantity of interest is the displacement   
     of frame 

1. It is of interest to examine the so called design-point excitation and design-point response, which 

respectively represent the most likely excitation and response for a specific input, response threshold 

and time. Fig. 5.2 shows the design point bi-directional excitation and the global response of the 

system for thresholds       and       where   
          

  is the root-mean square response of 

the linear system. Interesting is to notice that the structure achieves the threshold with zero slope in the 

global direction 2 and the excitation has zero value at time    . 

 

Finally, given a particular discretization scheme, one can directly compute the IRF or the FRF of the 

TELS for each input of interest. Fig. 5.3 compares the IRFs and FRFs of three TELSs corresponding 

to the thresholds     ,       and      , where            [Hz] is the frequency of the 

translational mode.  

 
Table 5.1. Structural and Excitation Properties  

Structural Properties a[m] b[m] e[m]  [kg/m
2
]    

 20 30 3 500  

 

  

Bouc-Wen Properties   c[kNs/m] k[kNm]                      A 

Frame 1, 2 and 3  0.1 1.51E3 2.51E3      
         

   3 1 

 

Excitation Properties  S
(1)

[m
2
/s

3
] S

(2)
[m

2
/s

3
] tx[s]         

  
     

  

  
     

n 

time domain  1 1 6 0.01  50 2x600 

frequency domain 1 1 6  0.1 10 2x200 

 
 

 
 

Figure 5.1 Mathematical models of the structure  



 
 

Figure 5.2 Design point excitation, and global response to the design point excitation for a threshold       

and a time     [s] 

 

 

 
 

Figure 5.3 FRFs and IRFs for a specific TELS  

 

 

6. RANDOM VIBRATION ANALYSIS  

 

By repeated TELM analysis, a sequence of design points for an ordered set of thresholds       
     at a specific time    is obtained. From this sequence, it is possible to directly compute the  



 first-order approximation of the CDF as:  
 

      
                     (6.1)    

 

and the first order approximation of the PDF as: 

 
      

                             (6.2)    

 

where      is the standard normal PDF. Fig. 6.1 shows the CDF and the PDF of the displacement 

response of frame 1 in direction 1. The figure reports TELM results with both time and frequency 

domain discretization approaches compared with result of crude Monte Carlo simulation with a 

sample size of 100,000.  It is of interest to observe that the probability distribution is not Gaussian. In 

fact, in the log scale, the tail of the PDF tends to be linear instead of parabolic like for a Gaussian 

distribution. Moreover the IRF and/or FRF of each TELS can be used for time or frequency-domain 

analysis to compute other statistics of interest such as mean up crossing rate and first passage 

probability. For stationary excitations a convenient approach is to compute these statistics is the 

frequency-domain. For each threshold of interest the qth spectral moment of the response is obtained 

as: 

 

                        
    

 

 
     (6.3)    

 

where         is the power spectral density of the jth excitation component. Once the spectral 

moments are known, classical solutions can be used. For example, for the mean rate of up-crossing 

rate, we can use the formula                                 , while for the first passage 

probability the solution proposed by Vanmarcke (1975) can be employed.    

 

 
 

Figure 6.1 CDF and PDF of the tail probability for response of frame 1  

  
 
7. CONCLUSIONS 

 

The extension of the Tail Equivalent Linearization Method for multiple stochastic excitations is 

developed. Following the original work, the method is based on a discrete representation of each 

excitation component in terms of standard normal random variables. Two discretization methods are 

used, the original time-domain version and the later frequency-domain version. In both formulations, 

the multicomponent excitation and response belong to the ℝmXn standard normal space. In this space 

the equivalent linear system is defined by matching its design point with that of the nonlinear system 

for a specific threshold. For each TELS, the IRF or FRF for each component is determined. Once the 



IRFs or the FRFs are determined, linear random vibration analysis is employed to determine the 

statistics of interest. 

 

The multicomponent TELM analysis is a straightforward extension of the original TELM formulation, 

which offers a series of advantages to the conventional ELM or simulation methods. First, TELM is 

able to capture the non-Gaussian distribution of the nonlinear response. Second, TELM is not a 

parametric method and does not requires the selection of a linear model or a set of model parameters 

as in ELM. The advantage over the classical simulation methods lies in its efficiency. In fact TELM is 

able to accurately predict small tail probability values which are infeasible with classical simulation 

methods. The efficiency of TELM lies in efficient computation of the gradient in the improved HLRF 

algorithm. The number of random variables employed thus is crucial. Both versions, the time-domain 

and the frequency-domain, give similar and accurate results, even though, the two discretizations have 

different frequency contents. In particular, for time step        [s], the time domain discretization 

has a cut off frequency of 50[Hz], while the  frequency-domain has a cut off frequency of 10[Hz]. The 

similarity of the results suggests that the influence of high-frequency content of the excitation is 

negligible. In the time-domain formulation, the frequency content is dictated by the numerical analysis 

discretization step and most of the random varibles are used to describe non-important high 

frequencies. In this context, the frequency-domain formulation offers a much more efficient way to 

employ TELM. On the other hand, the frequency rate    dictates the periodicity of the excitation and 

response, e.g. for          [Hz], the periodicity     [s] which necessitates a selection of 

    [s]. Higher values of    requires smaller    and larger number of random variables. 

 

The drawbacks of multicomponent TELM analysis are the same as those for the single component 

TELM analysis. In particular, TELM requires considerably more analysis than ELM if one is 

interested only in the first and second moments. For second-moment analysis, ELM is the appropriate 

method while TELM is effective for accurate estimation of tail probabilities.  Moreover because 

TELM is based on FORM, there is no measure of the error due to the approximation and thus the 

accuracy of TELM cannot be estimated in advance. The numerical investigation shows the importance 

of considering both excitation components in computing the statistics of the response for coupled 

systems.  
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