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SUMMARY 
Buckling restrained braces (BRBs) are widely used as seismic resistant and seismic energy dissipation devices. 
As an energy dissipation brace, one key limiting state of BRBs is governed by cumulative deformation capacity 
up to and until core-plate fracture. Such capacity will always be less than that of the steel material employed. 
The view expressed in this paper is that the mechanism decreasing cumulative deformation capacity in the BRB 
is attributable to local buckling of the core plate, which leads to non-uniform strain distribution of the core plate 
in a longitudinal direction. This decrease in the cumulative deformation capacity of the BRB can be explained by 
applying the fatigue performance formula for the relevant steel material to the strain encountered at the local 
zone of the core plate. A ratio that compares degree of strain concentration at this localized zone with the total 
normalized deformation is proposed as determining the strain at the core plate local zone relative to total 
normalized deformation. In addition, the effect of the exponential value of the fatigue performance formula on 
methods for predicting cumulative deformation capacity of the BRB is investigated. 
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1. INTRODUCTION 
 
Buckling restrained braces (BRBs) are widely used as seismic resistant and energy dissipation devices. 
As an energy dissipation brace, one key limiting state of BRBs is determined by cumulative 
deformation capacity until the core plate fractures. The BRB’s capacity for stable dissipation of energy 
when its restraint conditions are satisfied allows for absorption of seismic energy. This absorption 
eventually leads to fracture of the BRB. Since BRBs are generally designed to avoid fracture during 
seismic events, determining cumulative capacity for energy dissipation proves crucial in evaluating 
performance and in assessing any needed replacement. 
Several researchers have confirmed that the core plate of the BRB undergoes a high-mode buckling 
deformation that leads to non-uniform strain distribution. In particular, Takeuchi and Hajjar, et al., 
(2010) studied such high-mode buckling of the core plate in BRBs. 
Cumulative deformation capacity of the BRB itself is most generally evaluated directly, using the 
Manson–Coffin fatigue formula to resolve fatigue performance in BRBs. However, cumulative 
deformation capacity should be evaluated initially by applying the fatigue performance formula to the 
strain concentration zone in the steel material of the core plate itself. 
In this paper, the mechanism that decreases cumulative deformation capacity of the BRB— other than 
steel material specifications— is sought in examination of local buckling of the core plate. This 
buckling leads to non-uniform strain distribution of the core plate in a longitudinal direction. This, in 
turn, causes a plastic strain concentration in the localized zone. Decrease in the cumulative 
deformation capacity of the BRB is accounted for by applying the fatigue performance formula for 
steel material to the strain at the local zone. A ratio comparing strain concentration degree at the local 
zone with the total normalized deformation is proposed to differentiate strain at the local zone from the 
total normalized deformation. Finally, the cumulative deformation capacity of the BRB can be 
evaluated using the local zone strain already calculated from the total normalized deformation. 



In addition, the effect of the exponential value of the fatigue performance formula on the methods for 
predicting cumulative deformation capacity of the BRB was also investigated. 
 
2. FATIGUE FORMULA FOR BRB 
 
From various past experiments on BRBs, Takeuchi and Ida, et al., (2008) proposed the following 
low-cycle fatigue formula for the BRB as Eq. (2.1)  
 

0.14 0.710.5 54.0n f fN N       (2.1) 

 
Here, Δεn is the normalized deformation amplitude, and Nf is the fracture cycle number. In addition, 
the results of Takeuchi and Shirabe, et al., (2006) have been employed in Eq. (2.1) to obtain Eq. (2.2) 
for a fracture cycle number of less than 20. 
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This modification expresses a partial concentration of plastic strain in the core plate at ultra-low 
fatigue failure zones, where stress exceeds maximum value and the tangent modulus becomes negative. 
The fatigue formula for a BRB derived jointly from Eqs. (2.1/ 2.2) is consistent with results based on 
the experimental data from Nakamura and Takeuchi, et al., (2000), as shown in Figure 2.1. In this 
figure, the fatigue performance of the BRB will be less than the fatigue performance of the steel 
material determined on the basis of the normalized deformation amplitudes given by Eq. (2.3). 
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3. STRAIN CONCENTRATION AT CORE PLATES 
 
Takeuchi and Suzuki, et al., (2006) have proposed an index of strain-concentration-ratio for ordinary 
circular tube braces, whereby the local strain at the point of plastic strain concentration is divided by 
the normalized deformation. The strain concentration ratio is defined by individual specification of 
each brace. This index enables one to estimate local plastic strain without significant calculation, such 
as arise from use of the finite element method. Brace fracture is then simply defined by the point at 
which local strain value becomes equivalent to the fatigue formula for the steel material. Therefore, 
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this method efficiently assesses brace fracture using a macro-model of the braces in question. In this 
paper, the authors have attempted to evaluate BRB fracture using a similar method. 
In our study, the BRB is constituted by a plane steel core plate restrained by a mortar filled steel tube, 
as shown in Table 3.1. and in Figures 3.1. and 3.2. The mechanical property of SN400 is assumed to 
be same as that of SS400. Hypothetically, the core plate exhibits a high-mode local buckling 
deformation continuously within the clearance between the core plate and the restrainer s under cyclic 
loading. In such case, the local buckling deformation y is calculated from the half amplitude of the 
local buckling wave lp as Eq. (3.1). 
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Here, εntm is the maximum value of normalized tensile deformation, and s0 is the initial value of the 
clearance between core plate and restrainer. Although local buckling occurs both in- and out-of-plane, 
only the latter is considered initially. The half amplitude of the local buckling wave lp is calculated as 
Eq. (3.2), 
 

3 2p c t cyl t E   (3.2) 

 
where tc represents thickness of the core plate, σcy yield stress of the core plate, and Et the tangent 
modulus of the steel material. The stress–strain hysteresis curve can be modeled by the modified 
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Menegotto–Pinto model, as proposed by Yamazaki and Kasai, et al., (2006). The hysteresis curve 
calculated using the Menegotto–Pinto model is consistent with the experimental results obtained by 
Nakamura and Takeuchi, et al., (2000) as demonstrated in Figure 3.3. Here, εn is the normalized 
deformation, while σn is the equivalent stress calculated by dividing axial force by initial sectional area. 
The amplitude of the normalized deformation Δεn is defined as Eq. (3.3), as shown in Figure 3.4. 
 

n ntm n     (3.3) 
 
The tangent modulus Et is directly calculated using the proposed Menegotto–Pinto model. Here, for 
ease, the tangent modulus is approximated by the normalized deformation function as Eq. (3.4), 
illustrated in Figure 3.5.  
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Figure 3.4. Normalized Deformation 
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The local buckling deformation gives the bending strain εb as in Eq. (3.5).  
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The geometrical deformation εg is additional to the normalized deformation εn as in Eq. (3.6). 
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The local strain amplitude Δεh at the point at which the most concentrated plastic strain occurs in the 
core plate is calculated using Eq. (3.7), and strain concentration ratio is αc as defined by Eq. (3.8). 
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Local in-plane strain may also be calculated using Eqs. (3.3) ~ (3.7) by substituting the thickness of 
the core plate tc for the width of the core plate Bc. The local in-plane strain is generally one eighth 
(1/8) the local strain out-of-plane. Moreover, maximum strain positions do not necessarily coincide in- 
and out-of-plane. Therefore, the effect of in-plane local buckling generally does not significantly 
affect cumulative deformation capacity of a BRB, so that out-of-plane strain is considered as 
predominant overall. 
 
 
 
4. EVALUATION OF CUMULATIVE DEFORMATION CAPACITY 
 
A BRB fracture can be established as the point at which local strain— calculated from normalized 
deformation εn and multiplied by strain concentration ratio αc— is consistent with the fatigue formula 
given in Eq. (2.3). Using this evaluation method, the BRB fatigue formula may be assessed as shown 
in Figure 4.1. The plots in this figure show experimental results derived from Nakamura and Takeuchi, 
et al., (2000) and Takeuchi and Ohyama, et al., (2010). This fatigue formula is by and large consistent 
with experimental results. Here, strain amplitude derived from experimental results using random 
amplitudes is assessed by the rain-flow method as the average plastic strain amplitude, and cumulative 
plastic strain is the sum of all plastic strains. The initial clearance between the core plate and the 
restrainer s0 is set at 1 mm in Nakamura and Takeuchi, et al., (2000) and at 2 mm in Takeuchi and 
Ohyama, et al., (2010). Figure 4.1. demonstrates that performance given by the BRB fatigue formula 
decreases as the clearance s between core plate and restrainer increases. Therefore, the strain- 
concentration-ratio αc of a BRB may be described as a function of clearance s. For example, the 
strain-concentration-ratio αc is approximated as in Eqs. (4.1/ 4.2) by the least squares method, as 
shown in Figure 4.2., where εy is the yield strain and Δεn the strain amplitude, when the fracture cycle 
number is 20. 
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In Figure 4.3., Eqs. (4.1/ 4.2) are compared with behaviour of restrainers, which is generally consistent 
with our test results. 
 
 
5. DAMAGE FACTOR EVALUATION BY AVERAGE PLASTIC STRAIN AMPLITUDE 
 
The fatigue evaluation of BRBs was originally based on constant stress amplitudes. Conversely, the 
amplitude of the response of each member subjected to seismic input is random. In such a case, stress 
amplitude distribution is generally determined by the rain-flow method. 
As an approach to applying the fatigue formula under random amplitude, as in Eq. (2.3), Miner (1945) 
defined a fatigue condition based on Eq. (5.1). Here, as soon as the cumulative damage factor of 
individual amplitude reaches 1.0, the element is considered as exhibiting fatigue failure. 
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Here, D is the damage factor, ni the number of cycles for the strain amplitude, and Nfi the number of 
failure cycles for a given strain amplitude. Additionally, Takeuchi and Ida, et al., (2008) proposed a 
method whereby average plastic strain amplitude is applied to fatigue failure conditions, as performed 
in evaluation in the previous section. In this section, the difference between Miner’s rule and average 
plastic strain amplitude is discussed. The number of fracture cycles is defined for average plastic strain 
amplitude by Eq. (5.2). 
 

2

1

2

m
p

fN
C




 
   
 

 (5.2) 

 

Here, p  is the average plastic strain amplitude, and C2 and m2 are exponential values of the fatigue 

formula within the range of the plastic region. Cumulative plastic strain is calculated as in Eq. (5.3).  
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Conversely, cumulative plastic strain calculation by applying Miner’s rule is shown as Eq. (5.4) 
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When the exponential value m2 = 1.0, Eq. (5.3) will be identical to Eq. (5.4), with both evaluations 
perfectly consistent. Thus, the difference between evaluations must rely on the exponential value m2.  
To investigate the influence of the exponential value m2, seismic response analysis results obtained by 
Takeuchi and Miyazaki (2006) were used. The analysis model was a 15-story, rigid BRB frame. For 
seismic-wave input, BCJ-L2, El Centro NS, Hachinohe EW, Taft EW, and JMA Kobe NS were 
applied. Maximum velocities for these seismic wave inputs were normalized at 75 cm/s. The ratio of 
the stiffness of the frame to that of the BRB was 1.0. BRB core plate material was LY225. 
Figure 5.1. displays damage factors calculated using Miner’s rule with average plastic strain 
amplitude; Figure 5.2. shows their ratios, indicating that damage factors increase as the exponential 
value m2 decreases from 1.0. From Eq. (2.1) we see the exponential value m2 is 0.71, and the damage 
factor calculated using Miner’s rule is approximately 1.2 times that calculated using average plastic 
strain amplitude. Takeuchi and Ida (2008) reported that the damage factor calculated using average 
plastic strain amplitude affords a degree of accuracy better than that calculated by Miner’s rule— and 
easier to evaluate, as it does not require individual amplitudes. To obtain the results of this study, the 
present authors have taken average plastic strain amplitude as an index for evaluating cumulative 
deformation capacities of BRBs under the strain of random amplitudes in preference to applying 
Miner’s method. 
 
 
6. CONCLUSIONS 
 
In this paper, the cumulative deformation capacity of BRBs is assessed using steel materials and 
mechanical models. In addition, evaluation of damage factors regarding such material under random 
amplitudes through seismic response analysis is discussed. Conclusions are here summarized in the 
following three statements: 
1) Strain-concentration-ratios of BRBs are attributed to a mechanism that reveals high-mode local 
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buckling as it occurs in the clearance between core plate and restrainer. 
2) The fatigue formula for a BRB evaluated from strain-concentration-ratio shows this clearance 

affecting the cumulative deformation capacity of a BRB, which in turn explains the test results. 
3) The damage factors for steel materials calculated by Miner’s rule slightly increases from those 

calculated using average plastic strain amplitude, as the exponential value of the fatigue formula 
decreases from 1.0. 
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