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SUMMARY: 
In the performance-based design method, a peak displacement response is more important than traditional 
force-based design method. Peak displacement response is directly related to the damage state of inelastic 
structures. In order to control damage state of structures for various seismic design levels (or performance levels), 
the peak displacement response should be controlled in design process. Inelastic displacement ratio (IDR) is 
defined as the ratio of the peak inelastic displacement to the peak linear elastic displacement. IDR allows simple 
evaluation of the peak inelastic displacement directly from the peak elastic displacement without computation of 
inelastic response. Existing researches for the IDR are limited to the piece-wise linear systems such as the 
bilinear or the stiffness degrading systems. The actual hysteretic behavior of structural elements and systems is 
smooth. The smooth hysteretic behavior is more representative of actual behavior than piece-wise linear 
hysteretic models. By considering the effect of the smooth hysteretic behavior on the IDRs, accuracy of the 
inelastic displacement demand calculated from elastic displacement demand will be increased than existing 
formulas without smooth effects. In this paper, the IDR is investigated for the smooth hysteretic behavior 
systems subjected to the near- and far-fault earthquakes. The simple formula of the IDR is proposed by using the 
two step procedure of nonlinear regression analysis. 
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1. INTRODUCTION 
 
Seismic response prediction and seismic capacity evaluation, for new and existing structures subjected 
to strong ground motions, are a part of the most interesting research areas in the earthquake 
engineering. In the point of view of an inelastic response evaluation, many researchers recognize that 
performance-based seismic design method has more interesting concept than traditional force-based 
design method, because of peak displacement is used as main parameter in the performance-based 
seismic design method. Peak displacement response is directly related to the damage state of inelastic 
structures. In order to control damage state of structures for various seismic design levels (or 
performance levels), the peak displacement response should be controlled in design process.  
 
The equal-displacement rule proposed by Veletsos and Newmark (1960) is described that the peak 
displacement of inelastic system is equal or less than the peak displacement of elastic system in the 
long period range. For oscillators with initial periods smaller than the characteristic period, Tg (Song 
and Pincheira, 2000), the inelastic displacements tended to be larger than the elastic displacements, 
depending on the strength or ductility of the system. The equal displacement approximation is 
generally applicable to stiffness- and strength degrading systems for periods greater than a 
characteristic period of the ground motion (Song and Pincheira, 2000). Peak displacements were 
generally larger than those of non-degrading systems (bilinear system) for periods less than Tg.  
 
Inelastic displacement ratio (IDR) is defined as the ratio of the peak displacement of inelastic system 
to the peak displacement of elastic system. Existing researches (Song and Pincheira, 2000; 



Ruiz-Garcia and Miranda, 2003a, 2006b; Hatzigeorgiou and Beskos, 2009; Mollaioli and Bruno, 2008; 
Hong and Jiang, 2004; Chopra and Chintanapakdee, 2004) for the IDR are limited to the piece-wise 
linear systems such as the bilinear or the stiffness degrading systems. 
 
Since the actual hysteretic behavior of structural elements and systems is smooth, the smooth 
hysteretic behavior (Song and Gavin, 2011) is more similar to actual behavior than piece-wise linear 
hysteretic models. Therefore, an effect of smooth hysteretic behavior on IDRs is evaluated for 
near-fault and far-fault earthquakes. In this paper, a simplified and approximate formulation of the 
IDR considering the various smooth hysteretic characteristics and the near-fault effect of ground 
motions is proposed. 
 
 
2. SDOF SYSTEM WITH SMOOTH HYSTERETIC BEHAVIOR 
 
Inelastic behavior of the SDOF system subjected to ground motion ( )(tw ) can be described as the 
following equation (Song and Gavin, 2011), 
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where, μ(t) is the ductility response, α is post-yield stiffness ratio defined as ratio of post-yield 
stiffness to elastic stiffness, Cy is a yield strength coefficient defined as the ratio of the yield force level 
to the weight of the system, and z(t) is normalized restoring force defined as the ratio of the inelastic 
restoring force to yield restoring force. 

 
The normalized restoring force, z(t), obeys the following nonlinear differential equation using the 
Bouc-Wen model (Peng and Conte, 1997) 
 

)( ] ))()(sgn()(1 [)( ttzttztz
p                       (2.2) 

 
where, p is the smoothness exponent in the hysteretic model. If 0(t)(t) >zμ , (t))(t)sgn( zμ is 1, 

otherwise, (t))(t)sgn( zμ is -1. 
 
The numerical solution (Song and Gavin, 2011) for smooth hysteretic behavior is developed using the 
Newmark-β approximations and Newton iterations. The algorithm (Song and Gavin, 2011) for 
constant-ductility response spectra is also developed using a combination of hyperbolic fits, the secant 
method, and Newton iterations. The numerical accuracy of the numerical solution for smooth 
hysteretic behavior and the algorithm for constant-ductility response spectra is verified by comparing 
strength-ductility relationship calculated by BiSpec (Hachem, 2004) and NONSPEC (Mahin and Lin, 
1983) programs (Song and Gavin, 2011).  
 
The effect of the smoothness exponent, p, defined in Equation (2.2), on the hysteretic behavior is 
shown in Figure 2.1. Values of p between 1 and 30 exhibit a range of hysteretic smoothness.  
Hysteretic behavior with p larger than 10 is similar to bi-linear behavior.   
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Figure 2.1. Effect of smoothness (p) on model hysteresis subjected to the SAC SE19 record (Vina del Mar, 

Chile, 1985) for SDOF oscillator with Tn = 1.0 sec,  =0.05, 05.0 , and = 5 (the strength coefficients of 

each oscillator were adjusted independently to achieve a peak ductility of 5) 
 
 
3. IDR FOR SDOF SYSTEM WITH SMOOTH HYSTERETIC BEHAVIOR 
 
IDR, Aμ, is defined as 
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where, inrmax  is maximum displacement of inelastic system and ermax
 

is maximum 

displacement of elastic system. 
 
IDR, Aμ, is also derived from strength reduction factor (SRF), Rμ, defined as  
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where, ry is yield displacement of inelastic system.  
 
Equation (3.2) is rewritten as  
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To propose a simple regression equation for IDR, 72 near-fault and 60 far-fault earthquakes are 
selected as shown in Tables 3.1 and 3.2. Details of earthquake records used, including earthquake 
names, magnitude, epicentral distance and peak ground acceleration (PGA), peak ground velocity 
(PGV) etc. are provided in the SAC steel project website (http://nisee.berkeley.edu/data/strong_motion 
/sacsteel/). Spectral displacements for the near-fault and far-fault earthquakes are compared in Figure 
3.1. The mean spectral displacement for near-fault earthquakes is about twice than that of far-fault 
earthquakes. 
 
Table 3.1. Far-fault ground motion records used in this study 

NO. 
SAC 
Name 

Earthquake Magnitude 
Distance 

(km) 
PGA 

(cm/sec2) 
PGV 

(cm/sec) 
1 LA07 Landers, 1992, Barstow 7.3 36 412.98 66.08 
2 LA08 Landers, 1992, Barstow 7.3 36 417.49 65.68 
3 LA09 Landers, 1992, Yermo 7.3 25 509.70 91.31 
4 LA10 Landers, 1992, Yermo 7.3 25 353.35 60.35 
5 LA45 Kern, 1952 7.7 107 141.49 24.7 
. . . . . . . 
. . . . . . . 

56 BO36 Saguenay, 1988 5.9 98 699.90 16.44 
57 BO37 Saguenay, 1988 5.9 118 514.13 36.73 
58 BO38 Saguenay, 1988 5.9 118 638.76 32.04 
59 BO39 Saguenay, 1988 5.9 132 495.52 28.98 
60 BO40 Saguenay, 1988 5.9 132 765.61 51.93 

 
Table 3.2. Near-fault ground motion records used in this study 

NO. 
SAC 
Name 

Earthquake Magnitude 
Distance 

(km) 
PGA 

(cm/sec2) 
PGV 

(cm/sec) 
1 LA01 Imperial Valley, 1940, El Centro 6.9 10 452.03 62.4 
2 LA02 Imperial Valley, 1940, El Centro 6.9 10 662.88 59.9 
3 LA03 Imperial Valley, 1979, Array #05 6.5 4.1 386.04 83 
4 LA04 Imperial Valley, 1979, Array #05 6.5 4.1 478.65 48.19 
5 LA05 Imperial Valley, 1979, Array #06 6.5 1.2 295.69 89.2 
. . . . . . . 
. . . . . . . 

68 BO10 Nahanai, 1982 6.9 6.1 72.23 7.72 
69 BO27 Nahanai, 1985 Station 1 6.9 9.6 246.99 10.74 
70 BO28 Nahanai, 1985 Station 1 6.9 9.6 232.37 16.16 
71 BO29 Nahanai, 1985 Station 1 6.9 6.1 170.20 21.03 
72 BO30 Nahanai, 1985 Station 1 6.9 6.1 206.67 22.08 
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(a) near-fault earthquakes (b) far-fault earthquakes 

 
Figure 3.1. Comparison of spectral displacements for near-fault and far-fault earthquakes 

 



The influence of displacement ductility ratio (μ), defined as ratio of maximum displacement to yield 
displacement, on mean spectra of Aµ are evaluated for smooth hysteretic models (α=0, p=2 and 5% 
damping ratio) with various levels of μ for the 72 near-fault and 60 far-fault earthquakes, as shown in 
Figure 3.2. It can be observed that the Aµ increase with increasing μ. The Aµ spectra for the near-fault 
earthquakes and μ = 5 are larger than 1.0 for the period ranges less than about 1.5 seconds. The Aµ 
spectra for the far-fault earthquakes and μ = 5 are larger than 1.0 for the period ranges less than about 
0.7 seconds. Figure 3.3 shows the coefficient of variation (COV) of Aµ spectra with several constant 
ductility values. It can be observed that the COV increase with increasing level of inelastic 
deformation with values varying from approximately 0.25 for μ =1.5 to approximately 0.4 for μ =10. 
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Figure 3.2. Influence of μ on Aµ for smooth hysteretic model with α=0.0, p=1 and  =0.05 
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Figure 3.3. Influence of μ on COV of Aµ for smooth hysteretic model with α=0.0, p=1 and  =0.05 

 

The ratio ( FFNF AA  / ) of IDR ( NFA ) for near-fault earthquakes to IDR ( FFA ) for far-fault earthquakes is 

compared in Figure 3.4. For the long period ranges larger than about 2.7 seconds, the values of 
FFNF AA  /  

are less than 1, otherwise, the values of FFNF AA  /  
are larger than 1. In other words, for the 

short period ranges less than about 2.7 seconds, NFA  is larger than FFA , otherwise, opposite trend 

occurs. This trend can clear with increasing μ.  
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Figure 3.4. Comparison of the ratio ( FFNF AA  / ) of IDR ( NFA ) for near-fault earthquakes to IDR ( FFA ) for 

far-fault earthquakes (α=0.0, p=1 and  =0.05) 

 
IDR can be calculated from SRF using Equation (3.3). Since several equations for SRF were proposed 
by many researchers, the μ/Rμ may be easily calculated using the existing equations (Krawinkler and 
Nassar, 1992; Lai and Biggs, 1980; Newmark and Hall, 1973; Riddel, Hidalgo, and Cruz, 1989; Vidic, 
Fajfar, and Fischinger, 1992) for Rμ.  
 
In order to evaluate an accuracy of Aμ calculated from Rμ, Aμ for near- and far-fault earthquakes are 
compared with μ/Rμ as shown in Figure 3.5. For μ =2, μ/Rμ is about 5% less than Aμ. For μ =10, μ/Rμ is 
about 15% less than Aμ. It means that the μ/Rμ can be underestimated about 5% ~ 15% than Aμ. 
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Figure 3.5. Comparison of Aμ and μ/Rμ (α=0.0, p=1 and  =0.05) 

 
Based on the observed dependency of the IDR with respect to the displacement ductility ratio, μ, and 
the period, Tn, an approximate formula for the IDR is function of μ and T. The effect of characteristics 
of the hysteretic smoothness and earthquakes for Aµ spectra are incorporated as recommended 
coefficients used in approximate formulation.   
 
To develop an approximate formula for Aμ(Tn, μ), a two-step nonlinear regression analysis  is 
performed using mean values of Aµ spectra for various hysteretic smoothness (p=1, 2, 5, 10, 20, 100) 
models subjected to 72 near- and 60 far-fault earthquakes. One example of the regression analysis of 
Aμ(Tn, μ), for the case of p=1 and far-fault earthquakes, is shown in Figures 3.6 and 3.7. In the first 
step as shown in Figure 3.6, the nonlinear regression for Aμ with variable Tn for discrete μ is carried 
out. In this figure, the solid lines represent the fitted curves by regression analysis and the solid lines 



with symbol represent real Aμ spectra. A simple regression equation for Aμ is proposed as shown in 
Equations (3.4) and (3.5). The Aμ of equation (3.4) has 1 for the elastic response ( =1).  
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where the coefficients a, b, and c can be obtained by the second step of the nonlinear regression 
analysis. 
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Figure 3.6. First-step of nonlinear regression analysis of Aμ for various ductility (case of far-fault earthquakes 

and p=1) 
 
In order to evaluate the coefficients a and b of Equation (3.5), the second-step nonlinear regression 
analyses are performed as shown in Figure 3.7. Although the coefficients a and b are the function of μ, 
the coefficient c has almost constant value regardless of μ. Therefore, the coefficients a and b are 
evaluated from the nonlinear regression analysis using a properly assumed constant c (c = 4 for 
near-fault earthquakes, c =5 for far-fault earthquakes). 
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Figure 3.7. Second-step of nonlinear regression analysis of Aμ for various ductility (case of far-fault earthquakes 

and p=1) 
 
For 12 cases made by combination of two earthquake types (near- and far-fault earthquakes), 6 smooth 
hysteretic models (p=1, 2, 5, 10, 20, and 100), the coefficients a, b and c of the Equation (3.5) are 
calculated using the two-step nonlinear regression analysis as shown in Table 3.3. 
 



Table 3.3. Coefficients to compute Aμ with constant ductility for smooth hysteretic model 

Earthquakes 
Smoothness 

parameter (p) 
a b c 

Near-Fault 

1 -0.345/ln(μ)+0.145 0.909/ln(μ)+0.224 4 

2 -0.311/ln(μ)+0.135 0.551/ln(μ)+0.352 4 

5 -0.213/ln(μ)+0.096 0.254/ln(μ)+0.477 4 

10 -0.158/ln(μ)+0.073 0.146/ln(μ)+0.524 4 

20 -0.124/ln(μ)+0.058 0.093/ln(μ)+0.548 4 

100 -0.075/ln(μ)+0.005 0.017/ln(μ)+0.639 4 

Far-Fault 

1 -0.336/ln(μ)+0.126 0.83/ln(μ)+0.17 5 

2 -0.292/ln(μ)+0.116 0.448/ln(μ)+0.285 5 

5 -0.202/ln(μ)+0.088 0.211/ln(μ)+0.367 5 

10 -0.144/ln(μ)+0.065 0.121/ln(μ)+0.403 5 

20 -0.102/ln(μ)+0.045 0.07/ln(μ)+0.428 5 

100 -0.042/ln(μ)-0.025 -0.026/ln(μ)+0.561 5 
 
For the smooth hysteretic model with p=1, the approximate Aμ spectra obtained by the formulation 
proposed in this study are compared with real Aμ spectra calculated from numerical analysis as shown 
in Figure 3.8. It can be noted that real Aμ spectra are accurately fit by the approximate Aμ spectra. In 
other words, the approximate formulation can be used as a good tool for the IDR, if the coefficients of 
the approximate formulation are properly selected for structural behavior and characteristics of 
earthquakes. By selecting proper coefficients according to the hysteretic model and earthquakes type, 
the accuracy of the approximate formulation may be greater than the existing formulations, which do 
not consider the hysteretic and the earthquake characteristics.  
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Figure 3.8. Comparison of Aμ estimated by the proposed regression equation and Aμ calculated from numerical 
analysis for various displacement ductility ratios (case of far-fault earthquakes and p=1) 

 
 
4. CONCLUSIONS 
 
This paper evaluates an IDR of smooth hysteretic behaviour systems subjected to near-fault and 
far-fault earthquakes. From the results obtained in this study, the following conclusions can be 
summarized as follows: 
 
1. Simple and accurate formula for Aμ is proposed by two step nonlinear regression analysis, the 

formula includes two earthquake type (near- and far-fault earthquake) and six smooth hysteretic 
type (p=1, 2, 5, 10, 20, and 100). By considering the effect of the smooth hysteretic behavior on 



Aμ, accuracy of the IDRs will be increased than existing formulas without smooth hysteretic 
effect. 

 
2. In shorter periods than about 2.7 sec, Aμ for near-fault earthquakes has about 5~60% larger than 

Aμ for far-fault earthquakes. However, the opposite trend occurs in longer periods than about 2.7 
seconds.  
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