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SUMMARY： 
In this paper, a quasi-static model is proposed to investigate the responses of a buried pipeline network under 
multi-support seismic excitations considering the spatial variation of ground motions. Firstly, the stiffness 
equations of the buried pipeline network are established using a finite element method(FEM). Secondly, 
considering the spatial variation of ground motions, a spectral representation method is employed to establish a 
ground motion field to describe the ground motions where pipeline network locates. Finally, the proposed 
method is used to investigate the responses of a cross pipeline network. Thereafter, the effects of different 
seismic excitations on the seismic responses of pipeline network are studied in detail.  
 
Keywords：Buried Pipeline Network  Finite Element Method( FEM)  Multi-Support Seismic Excitations 
 
 
1. INTRODUCTION 
 
Water distribution network and gas supply network are two important components of lifeline 
engineering systems and most of them are buried underground. During many previous strong 
earthquakes, it was found that buried pipeline systems suffered serious damages. The investigation 
indicated that seismic wave propagation is a major factor for the damages of buried pipelines. Since 
these buried pipeline systems are always distributed in a large area and composed of different kinds of 
components such as straight pipelines, joints, bends and tees, damages to single portions (especially 
close to junctions) often affect other adjacent portions of the systems under seismic excitations. 
Therefore, it is necessary to study the systems as a whole and investigate the interactions between 
different portions. Many researches have been carried out for this problem. In 1983, Singhal and Meng 
analysed pipe stresses as a static problem by assuming that the pipelines are the beams on elastic 
foundation. Takada and Tanabe(1987) carried out a seismic response analysis of buried pipeline with 
branches under sinusoidal waves. Using the FEM and the quasi-static analysis method, Wang and 
Lau(1989) studied the seismic responses of buried pipeline systems under seismic traveling waves. In 
recent years, Kuwata et al.(2008) developed a FEM analysis method to simulate the seismic behaviour 
of complicated pipeline network with several branches. 
 
Apparently, among the previous researches, the ground motion is usually simplified as a sinusoidal 
wave or a travelling wave, ignoring the spatial variation of ground motions. In this paper, a 
pseudo-static model is proposed to investigate the responses of buried pipeline network under 
multi-support seismic excitations considering the spatial variation of ground motions. Meanwhile, a 
cross network is used to validate the proposed method. 
 
2. FEM MODEL 
 
Usually, the seismic responses of buried pipelines can be obtained by quasi-static approach. Herein, 
the buried pipeline is idealized as a beam on elastic foundation, and its axial and lateral motion 
equations are given by  
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where EA and EI are the axial and bending stiffness of pipeline respectively, kA and kL are the spring 
constants of the soil surrounding pipeline in axial and lateral directions, u(x,t) and v(x,t) are axial and 
lateral displacements of pipeline, ug(x,t) and vg(x,t) are axial and lateral displacements of ground 
motions. 
 
The finite element stiffness matrices can be obtained from the differential equations (2.1) and (2.2) by 
variational principal. The element stiffness matrices of pipeline [KP] and soil [KS] are given by 
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where L is the length of element, and α=kAL, β=kLL, in which kA and kL are the spring constants of the 
soil surrounding pipeline in axial and lateral direction respectively.  
 
Usually, a segmented pipeline is connected by segments and joints. The joint here is also simulated by 
axial and bending springs. Meanwhile, its lateral relative displacement is restrained by an infinite 
stiffness spring. Correspondingly, the matrix is given by  
   



0 0 0 0
0 0 0

0 0
0 0

0

JA JA

JR JR
J

JA

JR

k k
k k

k k
K

Symmetric k
k

k

∞ ∝

∞

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.5) 

 
where kJA and kJR are the axial and the bending spring constants of the joint respectively, k∞ is the 
infinite spring constant. 
 
Before assembling the system stiffness matrix, the element stiffness matrices [KP], [KS] and [KJ] 
induced in local coordinates must be transformed to the corresponding matrices in global coordinate, 
and then the system stiffness equations can be written as 
 

[ ]{ } [ ]{ }SYS SJ G=K u K x                                                     (2.6) 
 
where [ ] [ ] [ ] [ ]SYS P S J= + +K K K K  is the system stiffness matrix in global coordinate, the symbol ‘-’ 
denotes matrix and vector in global coordinate, { }Ju is the pipeline displacement vector in global 
coordinate and { }Gx is the ground motion displacement vector in global coordinate.   
 
 
3. SIMULATION OF GROUND MOTIONS 
  
3.1. Ground Motion Locations  
 
Figure 1 shows a buried pipeline network subjected to a seismic wave propagating with an incident 
angle of θ. In order to reduce the computation time, the network is assumed to be far away from the 
epicentre. Therefore, the wave surface can be approximated as a plane vertical to the wave travelling 
direction, and the two-dimension problem becomes a one-dimension one. Projecting the pipeline 
network nodes on the wave travelling direction, some locations can be obtained and the corresponding 
earthquake histories can be described as f1(t), f2(t),…, fN(t), where N is the number of nodes. Thereafter, 
the ground motions at these locations can be simulated by a spectral representation method. 
 

 
 

Figure 1. Locations for simulating ground motions 
 
3.2. Spectral Representation Method 
 



Using the spectral representation method (Deodatis,1996), a one-dimension and multivariate stochastic 
processes can be described by 
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where fj

0(t) is the stationary ground motion at point j, φml is an independent random phase angle 
distributed uniformly over the interval [0,2π], Δω=ωu/n where ωu represents an upper cut-off 
frequency of power density function, ωml represents two-index frequency, in which 

( ) /1  ml l m nω ω ω= − Δ + Δ , l=1,2,…,n. 
 
In Eqn. (3.1), H(ω) is a lower triangular matrix by decomposing cross-spectral density matrix ( )o

a ωS  
using Cholesky’s method, and can be described as  
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where superscripts T and * denote the transpose and conjugate of the matrix, and 
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where Si(ω) is the power spectral density function of point i, γij(i j) is the complex coherence function 
between points i and j, and can be given by 
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in which |γij(ω)| is the logged coherency function, ξij represents the distance between points i and j, υa 
is the velocity of wave propagation. 
 
According to Eqns. (3.2) to (3.4), the off-diagonal elements of H(ω) can be written in polar form as 
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and Im and Re denote the imaginary and the real part of a complex number respectively.  
 
Submitting Eqns. (3.5) and (3.6) in Eqn. (3.1) and using FFT method, the stationary ground motions 
can be given. In order to describe the non-stationarity of ground motions, by multiplying modulating 
functions, the stationary ones can be transformed to the non-stationary ground motions. 
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4. EXAMPLES 
 
4.1. Background  

 
Figure 2 shows a buried pipeline network composed of continuous steel pipes. The parameters of the 
pipelines are E=2.05 1011Pa, A=0.0134m2, I=0.00014m4 and the soil spring constants surrounding the 
pipelines are kA=kL=5.65 107N/m, the boundaries of the network are free.  
 

 
 

Figure 2. A buried cross pipeline network  
 
4.2. Simulation of Ground Motions  
 
4.2.1 Power spectral density model 
The Clough-Penzein acceleration spectrum(1975) is selected to model the power spectral density 
function. 
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where S0 is a constant which determines the intensity of acceleration, ωg andζg are characteristic 
frequency and damping ratio of the field respectively, and ωf andζf  are filtering parameters. 
According to Deodatis’ paper (1996), for stiff soil condition, S0= 62.3cm2/s3, ωg=8π rad/s,ζg=0.6, ωf 
=0.1ωg andζf =ζg. 
 
4.2.2 Coherence function model 
The Harichandran –Vanmarcke model (1986) is chosen to describe the coherence function. 
 

2 2
( , ) exp (1 )exp

( ) ( )
B B

A A
ξ ξ

γ ξ ω
αν ω ν ω

⎛ ⎞ ⎛ ⎞
= − + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.2) 

 
where ξ is the distance between two points, B=1-A-αA, ν(ω) is the frequency-dependent correlation 
distance and can be written as 
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and other parameters are ω0=6.85 rad/s, α=0.147, A=0.736, κ=5210m and b=2.78 respectively. 
 
Finally, noticing the Eqn. (3.4), the velocity of wave propagation υa is set as υa=1000 m/s. 
 
4.2.3 Modulating function model 
Amin-Ang model (1968) is selected as the intensity modulating function to transform the stationary 
ground motions to non- stationary ones.  
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where t1=1sec, t2=7sec, c=1.15 (Li and Li,1992). 
 
4.2.4 Ground motion displacements 
The ground motions for seismic response analysis of the buried pipeline network is displacement 
histories, therefore, the previous ground motions simulated by spectral representation method must be 
integrated twice. 
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4.2.5 Samples of simulated ground motion 
Two methods are used to simulate the seismic wave propagation. One is a travelling wave and the 
other is a wave generated by the spectral representation method. In two waves, the time history of 
node A is assumed the same. In figure 3-a), the seismic wave propagates as a travelling wave with the 
propagation velocity of 1000m/s and without any change in its shape between node A and node B. In 
figure 3-b), considering the spatial correlation, the ground motion, which is generated by the spectral 
representation method, changes obviously from node A to node B.  
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a) Travelling waves                        b) Spatial correlated seismic waves 
 

Figure 3. Samples of time histories of displacement 



4.3. Seismic Responses 
 
Discretizing the buried pipeline networks showed in Figure 2 to elements with 1 meter in length, the 
system stiffness equations can be obtained. The seismic response analysis of the pipeline network 
under excitations of travelling waves and spatial correlated waves are carried out respectively, and the 
two models are defined as model 1 and model 2. 
 
Without loss of generality, the peak stresses distributions along pipeline AB of model 1 and model 2 
are drawn in Figure 4 and Figure 5, receptively. In Figure 4, the axial and bending peak stresses of 
model 1 distribute periodically along the pipeline AB and the maximum values are at the junction. But 
in Figure 5, the seismic responses of the pipeline network of model 2 are very different from that of 
model 1. The axial and bending peak stresses distribute irregularly along the pipeline AB, and the 
maximums of the peak stresses are much larger than those of model 1. For example, the maximal axial 
peak stress of model 1 is about 30MPA while that of mode 2 is two times larger, about 60MPA. This 
indicates that the ground motions have important influences on the responses of buried pipeline 
network. 
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Figure 4. The stress distribution of pipeline AB of model 1 
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Figure 5. The stress distribution of pipeline AB of mode 2 
 
 
5. CONCLUSIONS 
 
Considering the spatial variation of the ground motions, a method of seismic response analysis of 
buried pipeline network subjected to multi-support seismic excitations is presented in this paper. 
Thereafter, numerical examples are given to study the seismic responses of buried pipeline network 



under different types of ground motions. Apparently, ground motion is an important factor which 
influences the seismic response of the buried pipeline network. The responses of the pipeline network 
subjected to ground motions considering the spatial variation are obviously larger than those without 
considering. Therefore, the previous analysis methods which simplified the seismic wave as a 
sinusoidal wave or a travelling wave underestimate the pipeline network’s response. Thus, it is 
necessary to analyse a buried pipeline network as a whole and consider the influences of spatial 
variation of ground motions.  
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