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SUMMARY:  
Systems of ODEs arising from transient structural dynamics frequently exhibit high-/low-frequency, 
linear/nonlinear behaviours and mixed first-/second-order forms of subsets of state variables. With this in mind, 
the paper resorts to the first-order L-stable time integration method, i.e. Rosenbrock-based L-Stable 
Real-Time(LSRT) method. In detail, a two-stage LSRT (LSRT2) method is introduced, as well as its stability 
and accuracy analyses via numerical simulations and its application to Real Time Substructuring test of a spring 
pendulum system. To solve the same problem and to improve computational efficiency, the LSRT2 method is 
also implemented in a partitioned form and incorporated with subcycling, resulting an interfield parallel time 
integration method(PLSRT2). To study the numerical performance of the PLSRT2 method, simulations of 
three-DoF system and Real time substructuring test of a Two-DoF system are carried out. The numerical 
simulations and the experimental results reveal that the method exhibits favourable stability and second order 
accuracy.  
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1. INTRODUCTION 
 
Most of research works carried out on numerical simulations in the field of seismic engineering 
considers structural integrators for equations of motion second order in time. But for some special 
cases, such as structural control problems and Real-Time Substructuring Testing(RTST) tests, the 
utilized integrators are required to deal with mixed first-/second-order ODEs. In order to solve this 
problem, there are mainly three options: i) to use different integrators for structural and control 
systems, respectively, –see for instance Wu et al. (2007), that utilizes the Newmark-β method for the 
emulated structure and a proprietary MTS controller with its own built-in time discretization; ii) to 
reformulate the control equations in a second-order form (Brüls and Golinval, 2006), and employ a 
structural integrator like the Generalized-α (Chung and Hulbert, 1993) for both systems; iii) to use 
first-order integrators like the LSRT algorithms, for both structural and control systems. In this paper, 
we adopt the last option owing to the fact that it is easier to reformulate second-order ODEs to the 
first-order form. In addition, the LSRT method exhibits user-defined algorithmic damping, which can 
filter out high-frequency oscillations without sacrificing the accuracy of low-frequency modes. 
 
As far as complex structures under large excitations are concerned, systems of ODEs may contain high 
nonlinearity which is frequently concentrated in specific regions of the emulated structures. Hence, 
both linear Multistep and Runge-Kutta algorithms integrating all state variables, the socalled 
monolithic way, may impose a huge computational disadvantage for the reason that the used time step 
is required to satisfy the stability and accuracy conditions of all the state variables. In view of those 
problems, researchers have devoted significant effort to implement partitioned time integration 
methods to achieve greater computational efficiency, i.e. integrating different subdomains with 
different integrators and/or different time steps. Those with different time steps are also called 
subcycling (Daniel1998) or multi-time-step methods (Gravouil and Combescure 2001). In the 
framework of multibody system dynamics, Arnold et al. (2003) restricted the communication between 
subsystems to discrete synchronization points and required interpolation/extrapolation owing to the 



 

use of different time steps. They stated that subcycling techniques could suffer from numerical 
instability that might be further exacerbated by discretization errors introduced by 
interpolation/extrapolation. To improve stability and/or accuracy, many partitioned integration 
methods were conceived, including stabilization techniques (Baumgarte1972) and extro/interpolation 
methods (Daniel1998). 
 
In transient structural dynamics, partitioned methods mainly relied on LMS methods that were applied 
to the Euler-Lagrange form of equations of motion. A distinct feature of these algorithms was the use 
of dual unknowns, i.e. the Lagrange multipliers, in order to enforce the continuity between subsystems. 
By means of a general approach, Gravouil and Combescure solved the system of equations with a 
structural integrator, i.e. the Newmark scheme (Hughes 1998), thus obtaining a multi-time-step 
explicit-implicit method (Gravouil and Combescure 2001), hereafter referred to as the GC method. In 
a greater detail, they conceived a method that was endowed with a conservation law and therefore was 
spectrally stable. However, the accuracy reduced to first order when subcycling was employed. The 
energy dissipation of the GC method when subcycling was adopted and the computation of interface 
reactions at the fine time step in the mesh were considered as drawbacks by Prakash and Hjelmstad 
(2004), who developed a variant of this method, viz. the PH method, that achieved energy preservation 
and elimination of interface reactions at the fine time step. Nonetheless, the staggered solution 
procedures of both the GC and the PH method were considered a drawback in either real-time or 
parallel computations. In order to solve this issue, Pegon and Magonette proposed an interfield parallel 
solution procedure complementary to the GC method, which led to a new method, the so-called PM 
method (Pegon and Pinto 2000). The favourable convergence properties of this method were 
thoroughly analysed in (Bonelli et al. 2008). Along this line, the paper proposes a novel partitioned 
integration method with subcycling strategy and parallelism.  
 
 
2. TWO-STAGE REAL TIME ROSENBROCK-BASED ALGORITHM 
 
Rosenbrock formulas have shown promise in research codes for the solution of initial value problems 
for stiff systems. These methods are derived from implicit Runge-Kutta methods and employ the 
Jacobian matrix in simplified Newton iteration for the evaluation of their corresponding implicit 
formulas. For an ordinary differential equation, either first- or second-order in time, we can write in 
the more abstract form 
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To advance the approximate solution of the problem from time tokt 1kt  , an s-stage Rosenbrock 
method have the form 
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Here the constants ,  ,  i ij i   and are the algorithm coefficients which determine the characteristic 

of the algorithm, for instance accuracy, stability and real-time compatibility, and 
ib

/  J f y is the 
Jacobian matrix calculated at the initial step solution yk. Each stage of the method consists of a system 

of linear equations with unknowns ki and with the inversion of the matrix ii t  JI . We assume 

that ii  , so that only one LU-decomposition is needed per step. In order to achieve real-time 

compatibility, it is assumed that
1

1

i

i j ij 

  so that the function f and its derivative at beginning of 

every inner stage only depend on the known solutions and coupling forces solved before. 
 
Based the form (2.2), Bursi et al. (2008) proposed three LSRT methods. On account of accuracy 



 

requirement and ease of implementation, the paper adopt the second order LSRT2 method to develop 
an partitioned integration method. To realize real-time compatibility, second-order accuracy and 
L-stability, the following parameters are set as follows: 
 

2 21 1 2 211/ 2 0 1 1 2 / 2 b b           ， ， ， ， .                        (2.3) 

 
With these values, the LSRT2 method reads: 
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To illustrate its application on structural problems, the semidiscrete equations of motion for a 
nonlinear structure can be expressed in a general form: 
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                                                (2.5) 

 
where M stands for the mass matrix which is assumed to be symmetric positive definite for simplicity 

 and for the vectors of applied and internal forces, respectively. In a FE context, 

the force vector can be split as with a stiffness matrix K, a damping matrix C and 

a displacement vector u. Differentiation with respect to time is expressed by a dot, and thus we set  
and  to define the corresponding velocity and acceleration vectors. 
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In order to implement the first-order integrator, the Euler-Lagrange form of equation of motion (2.5) is 
required to be transformed into the following Hamilton form: 
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where y is the state vector. When applied to structural systems, the favourable performance of the 
LSRT2 method with respect to low and high-frequency response can be observed from Fig. 1 where a 
comparison with the Generalized-αmethod (Chung and Hulbert, 1993) and the Chang’s method 
(Chang, 2002) is illustrated. Moreover, the method was proved to be energy-decaying via the energy 
method, which entails favourable stability for solving nonlinear problems (Jia et al.2011). 

 

 
 

Figure 1.  Spectral radii ρ of linearly implicit algorithms with respect to the Generalized-α method and the 
Chang’s method vs. the non-dimensional frequency Ω. 



 

2.1. Numerical simulations of a shear-type structure with a pendulum at the top 
 

To validate the numerical performances of the LSRT2 method, a shear-type structure with a pendulum 
in Fig. 2 is simulated by means of the LSRT2 method as well as the Constant Average Acceleration 
method (CAAM). The structural parameters are assumed to be m1=1.5kg, m2=10kg, m3=0.1kg, 
k1=k2=4000N/m, and L=0.2m。First, we consider free vibration with the initial conditions

1 0.2 /x m s , 

2 0.1 /x m s , , and the initial displacements are set to be 0. Then, we taken into account 

forced vibration excited by the N-S component of the Wenchuan earthquake recorded at Shifang 
whose peak acceleration is scaled to 0.2g. In this case, all the initial values are chosen to be 0. The 

simulations are realized in Mathematica, the time step is set to be 1ms and

0.1 /rad s 

1 2 /   2  is chosen. 
 

 

Figure 2. Schematic representation of a shear-type structure with a pendulum at the top 
 
For the sake of brevity, only displacement histories of the first floor and energy histories are presented 
in Fig. 3 where a reference solution is obtained by means of the LSRT2 method with time step 0.01ms. 
In the case of free vibration, the displacement solutions of both methods are of great agreement with 
the reference solution. In the case of excited vibration, the LSRT2 method yields a stable solution 
while the CAAM method leads to a failure around 7s in the Newton-Raphson iteration of equilibrium 
as shown in Fig.3(b). 
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Figure 3．Time history of simulations: (a) displacement under free vibration; (b) displacement under earthquake. 
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Figure 5. Force-displacement curve for the first 
storey of the shear-type structure.  

Figure 4. Displacement responses of the first floor of 
the shear-type structure. 



 

In addition, the same structure as shown in Fig. 2 including Bouc-Wen model (Bursi et al. 2011) is 
also simulated via the LSRT2 method under the E-W component of the Kobe Earthquake. To achieve 
higher nonlinearity, the peak acceleration is scaled to be 1g. The parameters of the Bouc-Wen model 
are listed: =4000N/m，0K 5  ， 3   and n=1. The displacement response of the first floor and its 

hysteretic curve are depicted in Fig. 4 and 5. It is observed that the high-frequency response is 
dissipated after 1s. This is benefit to the stability of nonlinear simulations including the Bouc-Wen 
model. Another simulation is done with 1/ 2  , i.e. without high-frequency dissipation property. The 
result is unstable which is neglected for sake of simplicity.  
 
2.2. Numerical simulations of a 3-bay 10-storey planer frame structure 
 
To check its applications to finite element models, a 3-bay 10-storey planer frame structure is 
simulated under the E-W component of the El Centro wave with a peak ground acceleration of 1g. All 
members are assumed to be constructed from a material with the Young modulus of 30000 MPa and 
the density of 25kN/m3. The horizontal displacement of the top story is depicted in Fig. 6 where the 
reference solution is obtained by the built-in integrator of the Matlab (the lism command). It is 
observed that the LSRT2 method entails stable result and the result is in high agreement with the 
reference solution. 
 

 
 

Figure 6. Displacement responses of the top floor of the planer frame structure. 
 
2.3. RTST Test of a spring pendulum structure 
 
In this subsection, the LSRT2 method is applied to a non-linear RTST test. The complete system, the 
partitioned substructures and the test rig are shown schematically in Fig. 7. It consists of a spring 

pendulum with its pivot point connected to the mass . The pendulum mass, , is assumed to act 

at a single point and is connected to the pivot point by a spring, . The parameter values of the 

system are provided in Table 2.1. In the experiment the Numerical Substructure (NS) is assumed to be 
nonlinear through a Bouc-Wen model and the behaviour of the 3-DoFs using the LSRT2 method is 
plotted in Fig. 8. The experimental results show that the capability of the LSRT2 method to deal with 
nonlinear problems and entails a stable response. Note that the force frequency f=1.2Hz is in 
resonance with the nonlinear NS. 

1
pm 2

pm
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pk

 
Table 2.1. Substructure system characteristics. 

 



 

 
Figure 7. Schematic representation and view of a Three-DoF structure with substructuring. 

 

 
 

Figure 8. Experimental results of the three-DoF system excited by external force with f=1.2Hz and A=20N 
using the LSRT2 method. 

 
 

3.  PARTITIONED TIME INTEGRATION METHOD  
 
Systems of ODEs arising from transient structural dynamics, like structure-soil interaction problems or 
structural control problems, very often exhibit high-frequency/low-frequency and linear/nonlinear 
behaviours of subsets of state variables, see for instance Fig. 9. In view of those systems, researchers 
have devoted significant effort to implement partitioned time integration methods to achieve greater 
computational efficiency. In this section, we present a partitioned time integration method that adopts 
both the Finite Element Tearing and Interconnection (FETI) method (Farhat et al. 1995) and the 
LSRT2 method presented in Section 2.  

 

Figure 9. A nuclear reactor vessel under a flight impact. 
 



 

To ensure real-time compatibility, we consider the acceleration continuity at the interface of 
subdomains. If the emulated system is divided into two subdomains A and B, the partitioned system 
can be expressed by a system of Differential Algebraic Equations (DAEs) of index-1 
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To implement the LSRT2 method, the following transformation is required: 
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Considering Eq. (10), an explicit Lagrange multiplier formulation is obtained 
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It is just because of the explicit evaluation of that the integration of each subdomain can 
independently advance as shown in Fig. 10 and the partitioned method can maintain explicit property 
as the progenitor LSRT2 method. 

Λ

 

 

Figure 10. The interfield parallel procedure of the LSRT2-based partitioned method with ss=2. 
 
The solution procedure is highlighted in Fig. 10 and detailed in Table 3.1 with the numbering of the 
two processes and the subscript i referred to the time step. Subdomain A is integrated with the coarse 
time step , while Subdomain B with the fine time step4At   Bt t ss  , where .  2ss 
 
The method is not self-starting and to preserve second-order accuracy and parallel characteristics, we 
choose the LSRT2-based partitioned method (Jia et al. 2011) with no subcycling to initiate the 
procedure. 



 

Table 3.1. Solution procedure of the PLSRT2 method. 
The solution procedure for Subdomain A is as 
follows: 

At the same time, the advancement procedure for 
substep (j=1…ss) in Subdomain B reads: 
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3.1. Simulations on a Three-DoF Split Mass system 
 
To investigate the performance of the proposed methods with multiple DoFs at the interface, we 
consider the Three-DoF system shown in Fig. 11. In the simulations, we consider: E = 2×108kN/m2, 
I = 2×10-5m4, m1 =1×104kg, m2 = 5×103kg, ρ = 2m, r=2, l = 5m. The mass matrices and the 
stiffness matrices of both subdomains can be defined as:  
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The simulations focused on possible drift-off effect at the interface. Time histories of the displacement 
of the emulated system integrated with Δt=10ms are depicted in Fig.12. One can observe that the 
partitioned method entail favourable results. 
 

 
 

Figure 12. Displacement response of the Three-DoF 
structure

Figure 11. Schematic representation of the 
Three-DoF split mass structure 

 



 

3.2. RTST Test on Two-Dof split-mass system 
 
In order to validate the effectiveness of the PLSRT2 method in RTST tests, a versatile system was 
conceived and installed at the University of Trento, Italy. It consists of four actuators, one dSpace 
DS1103 control board and other high performance devices, shown in Fig.13. This section briefly 
describes the application of the new parallel method on the 2-Dof split mass system as shown Fig. 14. 
 

 

 

Figure 13. Real-Time Substructure testing system 
and detailed view of a spring. 

 

Figure 14. The two-DoF model: (a) emulated system; 
(b) split system. 

 

 

 

Figure 15. Comparison between experimental and 
numerical Results. 

 
able 3.2. Characteristi ed and split s t T

 
cs of both emulat
Emulated system 

ubdomains in RTST tes
erical tructurNum subs e P cal su ctuhysi bstru re

Items M K C MN KN CN MP KP CP

T  ranslational 2210.9 346310 555.66 1658.2 306640 555.66 552.7 39670 0
Rotational 157.2 138524 22.226 117.9 12265 22.226 39.3 1711 0

 
The system characteristics are collected in Table 1. In the test, we selected A 4 16mt t s    and 

B . Additionally, the system delay of about 20ms was compensated for by 

means of a polynomial delay compensation scheme (Lamarche et al. 2008). Test results 
compared with reference numerical simulations are presented in Figure 15. Both 
displacements fit well to the simulated ones considering the fact that friction forces existing in 
the system were not modelled. In addition, smaller limited drifts between displacements 
elevant to both the numerical and the physical substructure were observed. 

/ 2mt t ss    s

r
 



 

4. CONCLUSIONS 

RT2 method to compensate 
ctuator-induced time delay and to RTST tests of complicated structures. 
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Initially in this paper, we introduced linearly implicit L-stable Rosenbrock methods with two-stages. 
And numerical simulations of a planer frame model and RTST test of a spring pendulum system are 
carried out to validate its numerical performances and applicability to structural dynamic problems. To 
improve computational efficiency, we developed and illustrated a novel interfield parallel partitioned 
algorithm. Numerical simulations on a Three-DoF split-mass system are conducted to investigate its 
stability and accuracy. Moreover a novel test rig conceived to perform both linear and nonlinear 
substructure tests was introduced, and tests on a two-DoF split-mass system were illustrated. The 
numerical simulations and the experimental results reveal that the method exhibits favourable stability 
and second order accuracy. Work in progress is to implement the PLS
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