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SUMMARY: 
A finite element program “FLIP”, in which a strain space plasticity model called “Multi-spring model” is 
implemented, has been widely used in seismic design practice in Japan. However, the model is based on the 
infinitesimal strain theory and the application is limited to small displacement phenomena. Therefore, the 
authors have extended the model based on finite strain theory including total and updated Lagrangian (TL/UL) 
formulations and developed a large deformation analysis program, called “FLIP/TULIP”, to simulate large strain 
and rotation phenomena. This paper presents the applicability of the program by performing seismic response 
analyses on the dynamic behavior of an embankment in geotechnical centrifuge experiments. Primary 
conclusions are summarized as follows; (1) Finite strain analyses give closer agreements with measurements 
than infinitesimal strain analysis does. (2) TL and UL formulations are numerically equivalent. (3) The effect of 
geometrical nonlinearity has to be considered in predicting the seismic response of embankments. 
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1. INTRODUCTION 
 
A finite element program “FLIP (Finite Element Analysis of Liquefaction Program)” is a computer 
program for dynamic effective stress analysis of soil-structure systems during earthquakes including 
soil liquefaction. The program can simulate residual displacements of soil-structure systems caused by 
earthquakes, and therefore it has been widely used for seismic performance evaluation and seismic 
design of urban structures in Japan. In the program, a strain space plasticity model called 
“Multi-spring model” is implemented as a constitutive model of soil elements. The model can take 
into account the effect of rotation of principal stress axis directions, the effect of which is known to 
play an important role in the cyclic behavior of the anisotropically consolidated sand. However, the 
formulation of the model and governing equations in FLIP have been carried out based on the 
infinitesimal strain theory, which means that the application should be, strictly speaking, limited to 
phenomena under small strain, small displacement and small rotation. Although a tentative method 
called “simplified large deformation analysis” (Ozutsumi, 2003) was introduced into the program in 
order to overcome the deficit, the method can’t exactly consider the effect of geometrical nonlinearity 
(as described later). Therefore, the authors have extended the Multi-spring model based on finite strain 
theory including both total Lagrangian (TL) and updated Lagrangian (UL) formulations to simulate 
large strain and rotation phenomena. In this research, the performance of the model is studied by 
simulating the dynamic behavior of embankments on liquefiable sand deposits during shaking in order 
to verify the applicability of the program. 
 
 
2. SUMMARY OF CENTRIFUGE MODEL TEST 
 
To study the dynamic behavior of an embankment on a liquefiable sand deposit, a series of centrifuge 
model tests was performed in the P.W.R.I (2000). The applied centrifugal acceleration was 50 G. In 



the experiments, various sorts of countermeasures were adopted. In this research, the target of the 
simulation is the result of the test case with no countermeasures. A model configuration shown in Fig. 
2.1 is a cross section of an embankment on the sand deposit with 13.0 m depth. The crest height is 5.0 
m, and lateral length at the top and bottom are 3.0 m and 23.0 m, respectively. Groundwater level is at 
1.8 m below the surface of the ground. The relative density of the upper and lower layer of the 
saturated sand deposit is approximately 60 % and 90 %, respectively.  Table 2.1 shows the physical 
properties of the Edosaki sand, which was used for the upper deposit and embankment, and the silica 
sand No.7, which was used for the lower deposit. Aggregates were placed at the bottom of the 
embankment with the aim of preventing the embankment from soaking up pore water by suction. 
Figure 2.2 shows the input motion, which is composed of seven sinusoidal waves (main shock) with a 
peak acceleration of approximately 0.4 g and subsequent aftershocks with acceleration amplitudes less 
than 0.1 g. The induced crest settlement was 2.04 m at the end of the main shocks, and 2.30 m at the 
end of the aftershocks. 
 

 

 
 

Figure 2.1 Cross-section diagram in centrifuge model test (Modified after P.W.R.I. (2000)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. CONSTITUTIVE MODEL OF SOILS 
 
3.1. Multi-spring Model Based on Infinitesimal Strain Theory 
 
The effective stress model of sands to be used in this study is a strain space multiple mechanism model 
called “Multi-spring model” (Iai et al., 1992). The model can take into account the effect of rotation of 
principal stress axis directions, the effect of which is known to play an important role in the cyclic 
behavior of the anisotropically consolidated sand. Brief summary of the model is given as follows. 
The integrated form of the constitutive relation is given by 
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where ( ')p p ε=  denotes effective confining pressure (isotropic stress), I  indicates second order 

identity tensor, ( )q q γ=  denotes virtual simple shear stress, n  is a unit vector along the direction 
of the branch between particles in contact with each other, t  is a unit vector normal to n . The 
volumetric strain ε  and the virtual simple shear strain γ  are defined as follows: 

Edosaki
Sand

Silica Sand
(No.7)

density of sand (g/cm
3
) 2.684 2.642

fines content Fc  (%) 10.8 0.7

average grain size/diameter D 50  (mm) 0.181 0.169
relative density Dr  (%) 60.7 90.8
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Table 2.1 Physical Properties of Sands (P.W.R.I. 
(2000)) 

 

Figure 2.2 Input acceleration (P.W.R.I. (2000)) 
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where the double dot symbol defines double contraction. In order to take into account the effect of 
volumetric strain due to dilatancy dε , effective volumetric strain 'ε  is introduced by 
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where 0p  and 0ε  indicate the effective confining pressure and volumetric strain at initial state, fK  

and n  denote the bulk modulus of pore water and the porosity of soil skeleton, km  is a parameter 

that controls how the bulk modulus of soil skeleton changes its value depending on confining pressure, 
S  denotes a state variable that determines the location and shape of liquefaction front, and 
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where ap  is a reference confining pressure and maK  is the bulk modulus of soil skeleton at 

ap p= . The time derivative of both sides of Equation (3.1) yields the incremental constitutive 

equation as follows (see Iai et al. (1992) for more details): 
 
 ' :=σ εɺ ɺℂ  (3.5) 
 
3.2. Finite Strain Formulation of Multi-spring Model in Reference Configuration 
 
The strain space multiple mechanism model, called “Multi-spring model”, under infinitesimal strain 
theory is to be extended for large deformation analysis based on finite strain formulation. In order to 
extend the model, first the unit vector N  along the direction of the branch between soil particles and 
the unit vector T  normal to N  are considered to be defined in the reference configuration of the 
material. Next, these vectors are assumed to change their direction and magnitude into n  and t  in 
the current configuration through the deformation gradient F  as follows: 
 
 ,  ,  where /= = = ∂ ∂n FN t FT F x X  (3.6) 
 
where X  and x  are the position vector in the reference and current configuration, respectively. The 
material description of the Multi-spring model in the reference configuration is given as follows with 
the second Piola-Kirchhoff effective stress 'S : 
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The fourth-order tensor ℚ  and the second-order tensor S  in Eq. (3.7) are defined by 
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where ℕ  is the unit fourth-order tensor. Incremental form of the constitutive equation in the 
reference configuration is derived by taking the material time derivative of both sides of Eq. (3.7) as 
follows (see Ueda (2009), Iai et al. (2012) for more details): 
 

 ' :=S Eɺ ɺℂ  (3.9) 



3.3. Finite Strain Formulation of Multi-spring Model in Current Configuration 
 
The spatial description of the Multi-spring model in the current configuration is obtained through the 
push-forward operation (e.g., Holzapfel, 2001) of the material description in Eq. (3.7) as follows: 
 

 1' :p J −= − +σ I σℤ  (3.10) 
 
where 'σ  denotes the Cauchy effective stress and 
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With the Oldroyd stress rate of the Kirchhoff effective stress (e.g., Holzapfel, 2001), incremental form 
of the strain space multiple mechanism model in the current configuration is given as follows with the 
rate of deformation tensor d  (see Ueda (2009), Iai et al. (2012) for more details): 
 

 ( )Oldr ' :J J=σ dℂ  (3.12) 

 
 
4. OUTLINE OF FINITE ELEMENT ANALYSIS 
 
4.1. Determination of Model Parameters 
 
The strain space multiple mechanism model, called “Multi-spring model”, described in the previous 
chapter has 15 parameters for the analysis considering liquefaction; eight specify volumetric and shear 
mechanism (deformation characteristics), and the rest controls liquefaction and dilatancy. The 
parameters for deformation characteristics, which were obtained from the past study (Hyodo et al., 
2008), are shown in Table 4.1. The rest parameters for liquefaction and dilatancy, which were 
determined by referring to the liquefaction resistance curves obtained from the cyclic triaxial tests, are 
shown in Table 4.2. The parameter qus in Table 4.2, which is the undrained shear strength for 
describing the steady state of sand, was determined by using a simplified method (Motoshima et al., 
2008) from the void ratio and fines content of sands. This parameter is defined only for the Edosaki 
sand layer, which is considered to have a major effect on the deformation of the embankment, because 
the fines content of silica sand No. 7 is very small compared to that of Edosaki sand as shown in Table 
2.1. 
 
4.2. Initial and Boundary Conditions and Input Motion 
 
Numerical analyses were carried out with the same prototype dimension of the centrifuge model test. 
Figure 4.1 shows the finite element mesh. In order to approximate the boundary conditions of the rigid 
container in the model test, degrees of freedom of displacements at the base were fixed both 
horizontally and vertically, and only horizontal displacements were fixed at the side boundaries. 
Before dynamic analyses, a static analysis was performed under drained condition with gravity in 
order to simulate the initial stress condition in the model test before shaking. After the self-weight 
analysis, a seismic response analysis was performed under the undrained condition by using the 
recorded motion (Figure 2.2) at the bottom of the container as an input motion. The numerical time 
integration was done by the Wilson-θ method (θ =1.4) using a time step of 0.01 seconds. Rayleigh 
damping (α=0.0 and β=0.0002) was used to ensure stability of the numerical solution process. 
Selective reduced integration was adopted for Gauss integration using four nodes isoparametric 
elements. In computation by finite element method, four analytical methods (i.e., infinitesimal strain 
analysis, simplified large deformation analysis, and finite strain analyses) were performed in order to 
study about the effect of geometrical nonlinearity on the deformation of embankment. In the finite 
strain analyses, we employed both TL and UL formulation. 



Table 4.1 Model Parameters for Deformation Characteristics 

ρ n G ma K ma σma' mG mK φf c h max

t/m3 kPa kPa kPa （°） kPa

Edosaki Sand
(embankment)

1.70 0.49 84000 218000 98.0 0.5 0.5 34.0 0.0 0.26

Edosaki Sand
(dry deposit)

1.68 0.49 41000 107000 98.0 0.5 0.5 34.0 0.0 0.26

Edosaki Sand
(saturated deposit)

1.86 0.49 41000 107000 98.0 0.5 0.5 34.0 0.0 0.26

Silica Sand No.7
(saturated deposit)

1.98 0.40 86000 224000 98.0 0.5 0.5 48.0 0.0 0.24

Density Porosity
Exponent of

power
function for

modulus

Reference
mean

effective
stress

Elastic
tangent
shear

modulus

Parameters for deformation characteristicsSoil Type

Internal
friction
angle

Cohesion
Max.

damping
ratio

Elastic
tangent

bulk
modulus

 
 
 
 
 
 
 
 
 
 

 
 
4.3. Outline of Simplified Large Deformation Analysis 
 
The Multi-spring model described in the section 3.1 and governing equations (e.g., equation of 
motion) in FLIP are based on the infinitesimal strain theory, and thereby FLIP program is appropriate 
for simulating small displacement and small rotation phenomena. However, in practice of seismic 
response analysis, it is often required to simulate large deformation phenomena. To meet this demand 
in a swift and practical manner, a tentative method, called “simplified large deformation analysis”, has 
been introduced in the FLIP program. Brief summary of the method is given as follows. 
The equilibrium equation of FLIP program for seismic response analysis is 
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where B  denotes B matrix, ̂ 'σ  denotes effective stress vector, u  denotes relative displacement 

vector of nodes, C  and M  denote damping and mass matrices, guɺɺ  denotes input acceleration at 

the base, I  denotes a matrix for extracting the directional components of excitation from mass 

matrix, stˆ 'σ  denotes initial effective stress vector due to gravity, and fK  denotes bulk modulus of 

pore water, n  denotes porosity, ̂m  denotes matrix for extracting the volumetric strain component 
from the strain vector. As understood from the right hand side of Eq. (4.1), the load terms during 
seismic response analysis are the inertia due to earthquake motion and the initial stress load term due 
to gravity. If a deformation is induced in a soil-structure system due to earthquake motions, such as 
settlements induced in an embankment, the vertical stress in the soil below the structure or 
embankment will be reduced. In order to capture this phenomenon, self-weight analysis due to gravity 
are performed using updated coordinates of nodes in accordance with the deformation of the structure 
at a certain time step interval during seismic response analysis and the results of the self-weight 
analysis is used to update the initial stress load vector in Eq. (4.1). This analysis is accomplished by 
the following step by step procedure. 
 

φp S 1 w 1 p 1 p 2 c 1 q us

（°） (kPa)

Edosaki Sand
(saturated)

28.0 0.005 1.80 0.40 0.80 1.70 200.0

Silica Sand No.7
(saturated)

33.0 0.005 2.30 0.30 0.60 2.00 -

Soil Type Parameters for dilatancy

Element 
No.259

Element 
No.235

Table 4.2 Model Parameters for Dilatancy 
 

Figure 4.1 Finite element mesh for numerical analysis 
 



a) Perform standard self-weight analysis due to gravity. 
b) Perform seismic response analysis for one or specified number of time step(s) by Eq. (4.1). 
c) Update the coordinate of nodes using the relative displacement vector computed by b). 
d) Perform self-weight analysis using the updated coordinate by 
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new new newv g
Ω
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where newΩ  denotes updated volume for integration of elements, newB  and newM  denote 

updated B and mass matrices. 
e) ˆ 'newσ  computed by d) is an updated stress reflecting deformation induced in the structure and this 

stress should be used for dynamic analysis as nodal force. However, neither B matrix nor element 
volume for integration in the seismic response analysis is updated. Consequently, the load vector 
due to gravity for dynamic analysis is computed by using the initial B matrix and initial volume by 

 

 T ˆ ' dnew v
Ω
∫B σ  (4.3) 

 
f) Update the second term in the right hand side of Eq. (4.1) with the load vector computed by Eq. 

(4.3). In this manner, ̂ 'newσ  is reflected in dynamic analysis. After this step, return to b), and 

continue the seismic response analysis. 
 
As described above, the equilibrium equations are extended in the simplified large deformation 
analysis in order to overcome the disadvantage of FLIP program based on the infinitesimal strain 
theory. However, the formulation of constitutive equations (e.g., Multi-spring model) is the same as 
that in the infinitesimal strain analysis described in the section 3.1, and therefore the simplified large 
deformation analysis has some flaws as follows; (1) It requires more computational time than 
infinitesimal deformation analysis because self-weight analyses are redone many times during a 
seismic response analysis in certain intervals. (2) It is, in fact, based on infinitesimal strain theory, 
which means that the effect of geometrical nonlinearity due to large deformation is not accurately 
considered. (For example, plane elements under rigid body rotation result in inducing some strain 
variation in the analysis, while no variation of strain (Green-Lagrange strain in a precise sense) 
components is theoretically induced if the geometrical nonlinearity is appropriately taken into 
account.) (3) It is not necessarily effective against each and every cross section of soil-structure 
systems. Considering some disadvantages of the simplified large deformation analysis and the fact that 
some soil-structure systems have induced settlement and deformation in several meters in past major 
earthquakes, the conventional FLIP program has a possibility to cause an unacceptable error on 
engineering judgement by ignoring the effect of geometrical nonlinearity. 
 
 
5. RESULTS OF THE ANALYSIS 
 
5.1. Computed Deformation of Embankment 
 
Figure 5.1 shows measured and computed deformations of the embankment after shaking. The 
deformations are shown by deformed meshes in solid lines with reference to the original configuration 
in broken lines. As shown in Figure 5.1(a), the deformed configuration obtained in the infinitesimal 
strain analysis differs widely from the measured one shown in Fig. 5.1(e). The deformation shown in 
Fig. 5.1(a) is unrealistic, in that most part of the embankment sinks down into the liquefiable deposit. 
Figure 5.1(a) also shows that the infinitesimal strain analysis overestimates the amount of the crest 
settlement (5.92 m) approximately as 2.6 times as the measurement (2.30 m) at the end of the main 
shock. By comparing Fig. 5.1(a) and (b), the overestimate of the crest settlement and unrealistic 
deformed configuration in the infinitesimal strain analysis are improved by performing the simplified 



large deformation analysis. The computed amount of the crest settlement is 3.07 m in Fig. 5.1(b), 
which is about the half of that obtained by the infinitesimal strain analysis and closer to the measured 
settlement. As mentioned above, the simplified large deformation analysis is very effective for 
estimating the amount of settlement and deformation of embankments, but has some disadvantages 
about the computational time and estimate of stress-strain relationship as described in the section 5.4. 
 

5.92m(a) (b) 3.07m

 
2.59m(c) 2.58m(d)

 
(e)

 
 

Figure 5.1 Computed and measured deformation: (a) Infinitesimal strain analysis; (b) Simplified large 
deformation analysis; (c) Finite strain analysis (TL); (d) Finite strain analysis (UL); (e) Centrifuge model test 

 
Figure 5.1(c) and (d) indicate that the results obtained in the finite strain analyses are in good 
agreement with the measurement shown in Fig. 5.1(e). In both the measurement and computation, 
soils near toes of the embankment are laterally expanded in the direction opposite to the embankment, 
while soils under the embankment are compressed vertically and sheared. The computed deformation 
mode is characterized by a crest settlement associated with lateral spread in foundation soils as the 
measured one is. The computed deformed configurations show that no significant difference exists 
between TL and UL formulation. The measured amount of the crest settlement is 2.30 m while the 
computed ones obtained by using TL and UL formulation are 2.59 m and 2.58 m, respectively, which 
give close agreement with the measurement and could be considered to be results on a little safer side 
for design practice. As mentioned earlier about the deformations, both formulations, which are TL and 
UL formulations, are also equivalent to each other about the settlement. The multiple mechanism 
model which has been extended based on the finite strain formulation, in which TL or UL formulation 
could be arbitrarily chosen, shows a reasonable capability to reproduce the deformation and settlement 
of the embankment. 
 
5.2. Distribution of Excess Pore Water Pressure Ratio 
 
Figure 5.2 shows the computed distribution of excess pore water pressure ratio ( m m01 ' / 'σ σ= − ) after 

shaking. The effect of pore water flow and migration is not considered in the figure because the 
seismic response analyses are performed under undrained condition. Regardless of the analytical 
methods (e.g., infinitesimal or large deformation analysis), we can see the fully liquefied zones (i.e. 
excess pore water pressure ratio is higher than 0.95) of the liquefiable sand deposit near the side 
boundaries and in the vicinity of the toes of the embankment while the excess pore water pressure 
ratio in the central zones beneath the embankment generally rises up to only 0.8. This is because soils 
in the zones constantly undergo the deviator stresses due to overburden stresses from the embankment. 
These soils tend to undergo shear failure rather than liquefaction. Comparison between Fig. 5.2(a) to 
(d) indicates that the infinitesimal strain analysis gives a little smaller values of excess pore water 
pressure ratio in the vicinity of the toes of the embankment and in the central zones beneath the 
embankment compared to other results. The distribution obtained by the simplified large deformation 



analysis shown in Fig. 5.2(b) is generally close to that by the finite strain analyses shown in Fig. 5.2(c) 
and (d), but they are slightly different in the shallow layer just beneath of the embankment and near 
the toes of the embankment. For example, at the element No. 259 shown in Fig. 4.2 the excess pore 
water pressure ratio by the simplified large deformation analysis is about 0.95, which is larger than 
that by the finite strain analyses (about 0.3). The difference is related to the stress path of the element 
as described later (see Fig. 5.3(b)). Comparison between Fig. 5.2(c) and (d) shows that TL and UL 
formulations are equivalent to each other in terms of the distribution of excess pore water pressure 
ratio as well as the crest settlement. 
 

(a) (b)

 
(c) (d)

 

 
 

Figure 5.2 Computed distribution of excess pore water pressure ratio after shaking: (a) Infinitesimal strain 
analysis; (b) Simplified large deformation analysis; (c) Finite strain analysis (TL); (d) Finite strain analysis (UL) 
 
5.3. Effective Stress Path and Stress-strain Relationship 
 
Figure 5.3 shows computed effective stress paths in two elements, which are indicated in Fig. 4.2, 
beneath the embankment in the liquefiable deposit. In the finite strain analyses, maximum shear stress 
τ  and mean effective stress m'σ  are given by the Cauchy effective stress as follows: 
 

 ( )( ) ( ) ( )2 2

11 22 12 m 11 22' ' / 2 ' ,  ' ' ' / 2τ σ σ σ σ σ σ= − + = +  (5.1) 

 
Figure 5.3(a) and (b) shows that the effective stress paths with respect to the maximum shear stress in 
the finite strain analyses are almost consistent with the result in the infinitesimal strain analysis. This 
consequence indicates the same tendency of the results obtained in simulation for monotonic and 
cyclic loading (Ueda, 2009). While the stress paths are almost identical at the element No. 235 
regardless of the analytical methods as shown in Fig. 5.3(a), at the element No. 259 the stress path 
obtained by the simplified large deformation analysis is different from other results beyond the phase 
transformation line and near the failure line as shown in Fig. 5.3(b). This seems to be due to the fact 
that in the simplified large deformation analysis self-weight analyses are redone with certain intervals 
during a seismic response analysis in order to take into account the effect of large deformation but the 
effect of geometrical nonlinearity is not precisely considered. 
 
Computed relationships between shear stress and shear strain for the elements indicated in Fig. 4.2 are 
shown in Fig. 5.4. In the finite strain analyses, shear stress and shear strain are expressed in terms of 
the Cauchy (effective) stress and Euler-Almansi strain, respectively. The curves for TL and UL 
formulations are almost consistent with each other in both Fig. 5.4(a) and (b). Figure 5.4(a) shows that 
the maximum shear strains in the finite strain analyses are about 10 % while those in the infinitesimal 
strain analysis and simplified large deformation analysis are 23 %, which is more than twice the 
results by the finite strain analyses. This is because the effect of geometrical nonlinearity is not 
precisely considered in the infinitesimal strain analysis and simplified large deformation analysis. The 
same tendency is shown in Fig. 5.4 (b). As a result, it is necessary to adopt the finite strain analysis in 
order to take into account the effect of geometrical nonlinearity in seismic response analyses, in 
particular at the range of shear strain more than 10 %. 
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Figure 5.3 Computed effective stress path 
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Figure 5.4 Computed relationship between shear stress and shear strain 
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Figure 5.5 Computed relationship between deviator stress and deviator strain 
 
Figure 5.5 shows computed relationships between deviator stress and deviator strain for the elements 
designated in Fig. 4.2. In the finite strain analyses, deviator stress and deviator strain are expressed by 
the Cauchy effective stress and the Euler-Almansi strain. As mentioned earlier in Fig. 5.4, the curve in 
TL formulation gives close agreement with that in UL formulation in both Fig. 5.5(a) and (b). Figure 
5.5(a) indicates that significant difference due to the analytical methods is not recognized. In contrast, 
the infinitesimal strain analysis and simplified large deformation analysis overestimate the residual 
deviator strain approximately as twice and 1.5 times, respectively, as those in the finite strain analyses 
as shown in Fig. 5.5(b). This means that the simplified large deformation analysis can’t take into 
account the effect of geometrical nonlinearity appropriately as well as the infinitesimal strain analysis 
because the both analytical methods are based on infinitesimal strain theory. So, when the range of 



large strain as shown in Fig. 5.5 is targeted, it is desirable to perform the finite strain analysis based on 
finite strain formulation rather than the simplified large deformation analysis. 
 
 
6. CONCLUSION 
 
In this study, simplified large deformation and finite strain analyses are performed in addition to 
infinitesimal strain analysis on the dynamic behavior of an embankment on liquefiable sand deposit in 
geotechnical centrifuge experiments in order to verify the applicability of an effective stress model. 
The model used in the analysis is a strain space multiple mechanism model called “Multi-spring 
model”, which has been extended based on finite strain formulation to take into account the effect of 
geometrical nonlinearity. Primary conclusions of this study are summarized as follows: 
 
The computed crest settlements of the embankment after shaking in the simplified large deformation 
and finite strain analyses give close agreement with the measured one, while the infinitesimal strain 
analysis overestimates the measurement. Comparison of the former two analytical methods indicates 
that the finite strain analyses possess higher accuracy than the simplified large deformation analysis 
for estimating the crest settlement of embankments. In the infinitesimal strain analysis, the deformed 
configuration, in which most parts of the embankment sink down into the liquefiable deposit, is widely 
different from the observed deformation. On the contrary, the simplified large deformation and finite 
strain analyses well simulate the observed deformed configuration. 
 
The computed stress-strain relationships by the simplified large deformation analysis indicates that the 
analytical method can’t take into account the effect of geometrical nonlinearity appropriately because 
it is based on the infinitesimal strain theory. Thereby, when large deformation phenomena such as 
settlement of embankments are considered, it is desirable to perform the finite strain analysis based on 
the finite strain formulation rather than the simplified large deformation analysis. All of the 
computed results (e.g., crest settlement, stress-strain relationship) indicate that the total and updated 
Lagrangian formulations are not only theoretically but also numerically equivalent to each other, and 
therefore demonstrate the validity of the computer programming for finite strain analysis. 
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