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SUMMARY 

The aim of "System Identification" is to determine the modal and system properties of structural systems. 

Because of various constraints in practice only single excitation and partial measurement at selected degrees of 

freedom is possible. In this paper, to identify a structural system, dynamic load was applied only along one of 

the degrees of freedom of the structure and the responses corresponding to a few degrees of freedom have been 

measured. To identify characteristic matrices of a system with this sort of restricted information, a new approach 

was intrtoduced. Taking into account the significant effect of noise reduction in improving the system 

identification accuracy levels, a noise reduction technique was also proposed. It was shown that as noise level 

increases, identification errors will also increase though to an acceptable range. The method's efficiency and 

precision were examined through the application of a "closed loop solution" to a six-storey flexural structure. 
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1. INTRODUCTION 

 

Structural Health Monitoring (SHM), as a need for reliable assessment of structural safety under 

service or extreme loads such as earthquake, requires system identification and damage detection. 

System Identification (SI) determines structural dynamic characteristics such as modal properties 

(frequencies, mode shapes and damping ratios) and system properties (mass, damping, and stiffness 

matrices). System identification methods that directly identify the characteristic matrices of a system 

(M, C, and K), have been investigated over several years as follows: 

 

Potter and Richardson in 1974, Richardson in 1977 as well as Richardson and Shye in 1987 developed 

an approach to identify mass, damping, and stiffness matrices of a linear elastic system. In the 

method, using Laplace Transform of the measured input, and the displacements along the system’s 

degrees of freedom (DOFs) under arbitrary loadings, and the “Transfer Matrix” (as a binomial 

function in term of Laplace value with coefficient of mass, damping, and stiffness matrices), they 

proposed a formulation for the direct identification of the system’s characteristic matrices. They 

applied full force vector on each DOF. The result for noise free case was exact and correct but their 

method did not include a discussion of the identification errors due to noise (Potter and Richardson, 

1974, Richardson, 1977, Shye and Richardson, 1987).  

 

Masri, Miller, Saud and Caughey in 1987, and Agbabian, Masri, Miller and Caughey in 1991 studied 

the direct identification of characteristic matrices of linear and nonlinear structural systems, and 

presented a detailed formulation which was based on the inverse solution of the problem of 

identifying the system's characteristic matrices in time domain. The investigated structure in their 

method was a special case of shear structure, and hence its matrices of stiffness and damping were 

trigonal. In their method, the mass matrix was assumed to be known, and by this unreal assumption, 

the identification errors in two other matrices (damping and stiffness) largely decreased (Masri et al., 

1987, Agbabian et al., 1991).  



 

Zabel in 2002 proposed a method of Wavelet Transform in which the wavelet mother function was a 

Gaussian function, and the mass matrix was known. He applied his method on linear time-invariant 

systems by solving an over-determined system of equations that can be solved for damping and 

stiffness parameters vector by a least-squares method. The identification approach was verified by 

means of a numerical simulation (Zabel, 2002).  

 

Ashtiany and Khanlari in 2011 proposed a method called “Added Mass Method”, in which by adding 

a controlled change in dynamic properties of the structure, i.e. as masses of stories, the arrays of 

stiffness, mass, and damping matrices of both shear and tortional unknown structures are estimated. 

This method is also successfully drawn on for calculating mass, damping, and stiffness matrices of 

ASCE-SHM Benchmark structure and the results show that the identification errors in matrices are 

within acceptable range (Ashtiany and Khanlari, 2011). 

 

In all previous studies, the vital task of reduction of the measurement points was missing. In the 

present paper, however, a method has been proposed that can be applied to any kind of classically or 

non-classically damped structural system. Compared to previous studies, this method is advantageous 

since here the input force is applied only along one of the DOFs of the structure, and each measured 

response (displacement, velocity, and acceleration) is independently mixed with instrumental noise. 

The existing methods of system property matrices estimation basically require exciting and 

measurement at all DOFs of the system. In order to obtain input and output data, one needs to perform 

an experiment/test on the system/structure under study. For instance, in modal testing, it is a common 

practice to excite the test structure by applying measurable excitations at several points, and then 

collect response data at the sensor locations (Ewins, 2000). However, many civil engineering 

structures are difficult to excite artificially due to their large size, geometry and location. Equally, a 

large amount of external energy is needed to excite an entire structure at a desired level of vibration. 

Thus, it is essential to reduce the number of the measuring points. This causes mathematical problems 

in the inverse solution of the equation of motion of the structure. This is the main reason why authors 

have proposed a new method in this paper as described below. 

 

 

2. PROPOSED METHODOLOGY     

 

The proposed method is based on the inverse solution of the single input problem of identifying the 

system's characteristic matrices of mass, damping and stiffness (M, C and K). One of the problems 

affecting the accuracy of the inverse solution of the system’s motion equation is the existence of 

unknown and inevitable noise in the measured input and output data, which has an adverse effect on 

most of the existing identification methods. Filtering noise in the frequency domain, though leading to 

smooth measured data, may also alter the frequency content, and accordingly reduce the reliability 

levels of the identification process; thus, the proposed method conducts the noise reduction process in 

the time domain.  

 

2.1. Input/output Measurements 

 

The equation of motion for the DOFs of a structure in N0 time steps can be written as: 

 

 )(=)(.+)(.+)(. tftxKtxCtxM                                                                                     (2.1) 

 

Where f(t) is the input force, and )(tx , )(tx  and x(t) are the acceleration, velocity, and displacement 

response, along the DOFs, respectively. Further, matrices M, C, and K are the mass, damping, and 

stiffness matrices respectively. The measured outputs are mixed with random noise, and are shown in 

N0 time steps as: 

 

 ))(()(=)( txnoisetxtu     
                                                                                                (2.2) 



         

Fig. 2.1 presents the proposed system identification method, which is based on the inverse solution of 

the equation of motions of a Multi Degree of Freedom (MDOF) structure with known measured 

displacements ue(t) ( )(= eee xnoisexu  ), velocities )(tue
 , and accelerations )(tue

  responses 

corresponding to known DOFs subjected to a known periodic impulsive type force fe(t) which is a 

Kronecker delta function, defined by Eqn. 2.3, and shown in Fig. 2.2 (as an example), applied along 

only one of the DOFs of the structure.  

 

 
 

Figure 2.1. The proposed system mass, damping, and stiffness matrices identification process  

 

 
 

Figure 2.2. An example of the periodic impulsive force 
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  Initial input data:  

Measurements of single input force at one of the DOFs and response at the selected DOFs 

in N0 time steps ( )(tfe
and )(tue

 , )(tue
 , )(tue

) 

 

Input data: 

Ensemble average of selected segments of the response and force ( )(tf s
, )(tus
 , )(tu s

 , )(tu s
) 

Frequency identification:  

Identification of the first period of the structure, using one of the common identification methods (T1) 

Define the period of impulsive force or slice length of the segments (Tf): 

 (Tf >T1) 

 

Forming the “tree-coefficient-matrices” in N0s time steps: 

Eqn. 2.6 to obtain 
Etu , 

Etu   and 
Etu  

 

Identification process: 

 Eqn. 2.9 to obtain the characteristic vectors of M
*
E, C

*
E and K

*
E 



Where g is a constant value of the force, and Δt, N0, and N0S, are the time step, the number of total 

time steps, and the number of time steps of the force period respectively. Fig. 2.2 shows the force for 

Δt=0.005sec, N0=6000, and N0s=600.  

 

2.2. Noise Reduction Process 

 

Existence of noise gives way to inequality in Eqn. 2.1. It ill-conditions the inverse problem and 

distorts the identified mass, stiffness, and damping matrices. To reduce such noises, a noise reduction 

process on the measured response and the force was introduced. Considering the repeating 

characteristic of the input load, the shape of the response function will be repeated throughout the 

specific time equal to the period of the force (Tf) as shown in Fig. 2.3 for noisy displacement response 

(with 5% noise) at the second storey of a six-storey flexural structure, under a periodic impulsive 

force applied at the first storey. Thus, by breaking down the input and output signals into segments 

with the duration equal to Tf (which must be higher than the first period of the structure, in order to 

cover all the system periods), and taking the ensemble average of segmented parts of fe(t), )(tue
 , )(tue

 , 

ue(t) (shown as )(tf s
, )(tus
 , )(tus

 , )(tus  
in N0s time steps with the duration of one segment), the noise 

will be substantially reduced. 

 

As shown in Fig. 2.3, the amplitude of the first segment of the responses is lower than other segments 

– since at the initial time of each segment, unlike the first segment, velocity will not be zero –. Since 

the instrumental noises are assumed to be white noise, the ensemble average of the segments of a 

white noise time history approaches to zero. Applying the aforementioned process will reduce the 

effect of noise on the responses of the structure. As an example, Fig. 2.4 shows the difference between 

the exact and noisy displacement responses for the first storey of an eight storey flexural structure for 

the case of 5% noise level, before and after applying the averaging process. Obviously, the duration of 

the cleaned response is reduced to the duration of one segment.  

 

 
 

Figure 2.3. Noisy displacement response (with 5% noise) at the second storey of a six-storey structure, 

under a periodic impulsive force applied at the first storey 
 

 
 

Figure 2.4. The difference between exact and noisy displacement responses for the first storey of an eight storey 

flexural structure, before and after applying the averaging process (5% noise) 

 



2.3. System Identification Process 

 

Below, the proposed method of system identification is described using the averaged force and 

response. In the case the force is applied along only one of the DOFs of the structure, the common 

inverse matrix solution method is not able to identify the elements of the characteristic matrices. 

Because when the zero values of the rows of the force tensor pre-multiplied to the inverted matrix, the 

row elements of the identified matrices are obtained zero. Obviously this is undesirable, and should be 

resolved by a suitable mathematical method. The equation of motion for the lateral or vertical DOFs 

of the structure, respectively for flexural structure or truss (DOFs 1 to N as shown in Fig. 2.5), in N0S 

time steps can be written as: 
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Assuming that the characteristic matrices are symmetric, the number of unknown elements in each 

matrix is equal to 
2

)1( NN . The mass matrix can be accumulated in the “unknown identification 

vector” formed as:   

 

 T

NNNNNNNNE MMMMMMMMMM ,11,12232211211

*

              (2.5) 

 

Similar characteristic vectors of C
*
E and K

*
E can be written respectively for damping and stiffness, 

made from the characteristic matrices. For each time step t, using the value of displacement response 

of different storeys of the structure, the “tree-coefficient-matrices” of uEt of order ]
2

)1(
[




NN
N  can 

be formed as: 

 

 
 

Figure 2.5. selected DOFs for the system identification process, and the concentrated masses for flexural 

structure (a) and Pratt truss (b) 
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 (2.6) 

Similar definition is applied to Etu  and Etu . So, Eqn. 2.4 in terms of introduced matrices can be re-

written as: 
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                                                                                   (2.7) 

 

Assuming that the “tree-coefficient-matrices” of Etu , Etu , and Etu  can be accumulated in the 

rectangular matrix R, Eqn. 2.7 can be rewritten for N0s time steps as: 
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Where, F is the column vector of single input in N0s time steps. The three characteristic vectors of 

M
*

E, C
*

E, and K
*
E, can be identified from the inverse solution of Eq. 2.8 as: 
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Considering that the number of time steps is relatively high, this simply means that the number of 

rows of the accumulated matrix R is more than its columns (







 


2

)1(
.30

NN
NN s

) and thus 1R  
is 

Pseudo inverse of the accumulated matrix R.  

 

Using the elements of the identified characteristic vectors, the characteristic matrices of the structure 

can be identified. The point of paramount importance here is that if the single excitation is applied at 

the first storey of a flexural structure, the identification results will bear the least possible errors. This 

is because the energy of this type of loading is distributed between all the storeys of the structure 

resulting in the lower amount of the identification errors. If the single excitation is applied at the last 

storey, the first mode’s contribution to the results will become more apparent than the higher modes, 

In contrast, when the force is applied at the first storey, the real contribution of higher modes will be 

preserved more.  

 

 

3. NUMERICAL RESULTS OF THE PROPOSED METHOD 
 

The proposed method has been applied to identify a six-storey two-span flexural linear structure with 

4-meter spans, and 3-meter storeys height as shown in Fig. 3.1, and with the properties shown in 

Table 3.1. The following assumptions were also made in the numerical studies: a) Concentrated mass 

nodes equal to 2 ton, are considered for each node of the model; b) The system properties have been 



identified along the lateral (1 to 6) DOFs; c) A periodic impulsive force with amplitude of 981 kgf, 

and period of 3 sec is applied along the 1
st
 DOF as shown in Fig. 3.1; d) Δt=0.005 sec; e) N0=6000; f) 

1% and 2% RMS ambient random white noise has been added to the response and force.  

 

Eqns. 3.1 to 3.3 show the exact value and identification errors for the obtained mass (kgf.sec
2
/cm), 

stiffness (kgf/cm), and damping (kgf.sec/cm) matrices in the cases of 1% and 2% noises. Each 

element of the shown matrices includes: 

















noises) 2% of case in theerror tion Identifica(%  

noises) 1% of case in theerror tion Identifica(%  

eExact valu                  

.  

 

The values of the elements of obtained characteristic matrices decrease, as they get away from 

diagonal elements. Further, the identification errors of the elements bearing very small values with 

respect to the diagonal elements are not important and are shown as NC. Eqns. 3.1 to 3.3 show the 

results for the flexural structure. As indicated in these equations, the maximum error observed was 

2.95%.  

 

 

 
 

Fig. 3.1. The assumed model of flexural structure 

 
Table 3.1. Properties of Members for the Models in the Numerical Analysis 

          Member property 

 

 

Member location 

Section 

height 

(cm) 

Section 

Area 

(cm
2
) 

Moment 

of Inertia 

(cm
4
) 

Elasticity 

Modulus 

(kgf/cm
2
) 

Weight 

per length 

(kgf/cm) 

Storeys 1 to 3  14 43 1510 2.039×10
6 

0.337 

Storeys 4 to 6  10 26 450 2.039×10
6
 0.204 
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As Eqn. 3.1 shows, the identification results for obtained mass matrix of the flexural structure are 

satisfactory, and the rate of the identification errors of diagonal values falls within 0.6% at the 

maximum. Assuming that total system mass matrix of the flexural structure is diagonal, the 

identification errors of off-diagonal elements of the obtained mass matrix are not important, because 

these elements are very small with respect to the diagonal elements. As observed in Eqns. 3.2 and 3.3, 

the identification results for obtained stiffness and damping matrices are excellent, and the 

identification errors of diagonal values do not exceed 0.52%.  

 

At the fifth and sixth storeys, the identification errors of the obtained mass and stiffness matrices are 

slightly increased compared to the lower storeys. The identificatin errors of diagonal elements of the 

obtained damping matrix are relatively uniformly distributed. Generally, the identification errors are 

within an acceptable range. The most identification errors of diagonal values in 2% noise level for 

mass, stiffness, and damping are -0.575%, -0.52%, and 0.51% respectively. 

 

 

4. THE EFFECT OF THE PROPOSED METHOD ON THE SYSTEM MODAL PROPERTIES  

 

To further evaluate the validity of the proposed method, the effect of identified system properties on 

the system modal characteristics of the six-storey flexural building with 5% noise level was studied. 

For this purpose, the obtained mass, stiffness, and damping matrices were used to calculate the 

frequencies and mode shapes subjected to the Cape Mendocino earthquake (California, 1992) with a 

7.2-magnitude main shock. Table 4.1 shows that the identified frequencies and mode shapes are in the 

excellent agreement with the actual values, especially for the first few modes.  

 
Table 4.1. Error in the Frequency and Mode Shapes of the Six-Storey Flexural Building (5% Noise) 

Frequency 

Mode No. 1
st
 2

nd
  3

rd
  4

th 
5

th 
6

th 

Ident. Frequency (rad/s) 

(% Error) 

3.088 

(0.28) 

 

8.279 

(0.11) 

14.391 

 (-0.06) 

22.216  

(-0.2) 

28.789  

(-0.1) 

44.636 

 (-0.04) 

Mode shape 

Storey/DOF Real 

(% Error) 

 

Real 

(% Error) 

 

Real 

(% Error) 

 

Real 

(% Error) 

 

Real 

(% Error) 

 

Real 

(% Error) 

 

1 1 

(0.00) 

1 

(0.00) 

1 

(0.00) 

1 

(0.00) 

1 

(0.00) 

1 

(0.00) 

2 2.5  

(0.44) 

2.23 

(-0.23) 

1.73 

(0.29) 

0.97 

(-0.41) 

0.34 

(-0.66) 

-1.04 

(0.15) 

3 4.01 

(0.34) 

2.88 

(-0.27) 

1.17 

(0.66) 

-0.5 

(2.78) 

-1.05 

(0.43) 

0.53 

(0.2) 

4 7.08 

(0.78) 

2.16 

(-0.07) 

-1.86 

(0.62) 

-1.54 

(0.77) 

0.68 

(1.05) 

-0.12 

(0.03) 

5 10.12 

(0.93) 

-0.27 

(-0.19) 

-1.83 

(1.4) 

1.91 

(1.36) 

-0.38 

(2.13) 

0.03 

(-4.88) 

6 11.94 

(1.05) 

-2.59 

(-0.12) 

1.81 

(0.77) 

-0.8 

(1.99) 

0.11 

(2.93) 

-0.005 

(NC) 

 

 



5. CONCLUSIONS 

 

In this paper, a general method was presented for the system identification of any kind of structures 

such as shear, flexural (with or without bracing), and truss under single excitation in which the 

mathematical problems of matrix-assisted inverse solutions, due to the input force applied along one 

of the DOFs of the structure, have been well solved, using the data from the measured input and 

output response. The proposed method can be drawn on to identify the matrices of mass, stiffness, and 

damping along the lateral or vertical DOFs of the structure. Also, an effective technique of averaging 

the segments of input and output data for noise reduction in the time domain was introduced.  

 

Based on the findings, the presented method is effective, and can achieve relatively precise results, 

despite the presence of systemic noises. By increasing the noise levels and structure DOFs, the 

identification errors will also increase. Similarly the identification error for the estimated damping 

increases with an increase in structural stiffness. It was also observed that if the single force is applied 

at the first storey of the flexural structures, the identification results will bear the lowest possible 

errors. 
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