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SUMMARY:

The safety analysis of a concrete gravity dam reguihe study of a shear sliding failure scendriough the
concrete/rock foundation interface for the maximdesign earthquake. The shear sliding analysis grbsity
dam with 100.0 m height is performed. A bi-dimensibexplicit model is adopted, where the concrete é&nd

its foundation are represented by adjacent elafiticks that interact with each other through thectete/rock
interface. Different models for the concrete/ronteiface are adopted based on the finite elemettiadgin
small displacements, and on the discrete elemetitadelogy, allowing large displacements at therfate.
Several parametric studies are presented whergdh& ground acceleration, the damping model arel, th
foundation stiffness influences are assessed.
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1. INTRODUCTION

The seismic evaluation of concrete gravity damsukha@onsider the possibility of sliding on the

horizontal foundation joint for the maximum desigarthquake, MDE. This analysis should be
performed not only for new dams but also for ergtones given that in the past simplified pseudo-
static models were usually adopted. The reassessaieaxisting gravity dams should also be

considered when the existing design norms are efddatding to higher maximum loads and more
demanding safety factors.

Before considering linear or nonlinear advanced pugtational models, it is possible to perform an
initial pseudo-dynamic analysis, Fenves and Ch¢p887). More recently, Basili and Nuti (2011),
have enriched the latter simplified mechanical nhdale including a nonlinear frictional and a
cohesive threshold shear resistant value. Légeal €1.996) presented an overview of the procedures
required to perform finite element analysis of aete dams. Several computer programs allow this
kind of analysis, Singhal (1991). In order to bdeatn perform nonlinear advanced shear sliding
analysis, the adopted analysis package should dem$bint or gap elements with a non-linear
behavior, connecting the dam to a rigid or flexitaendation and they should also consider prefgrabl
a time domain procedure.

Chavez and Fenves (1995) have proposed a hybgddrey-time domain procedure that allows for
base sliding on an elastic half-plane. Several @@sncan be found in the literature that deal \thth
application of finite element models to dam witepecial emphasis in shear sliding analysis, namely
in 2D, Aidi and Hall (1989), Léger and Katsouli 88, Mir and Taylor (1996), and in 3D Arabshahi
and Lofti (2008). Some of the works also includalireear models for the concrete dam. A discrete
element approach to shear sliding scenario cantasadopted, Lemos (1999). Programs based on
discrete element technology have the ability to ehtatge displacements at the joint interfaces.



In this work two structural analysis programs ateped,Parmac2Dand Dec-Dam Both adopt an
explicit time domain solution algorithm based oa tentred-difference algorithm, the main difference
between them are the models adopted for the ickerfehe progran?armac2Dcan adopt either, zero
thickness interface elements, small displacemeatysis, or a discrete element model based on a
simplified circular particle/edge interaction, Azelo and Lemos (2006). The progrddec-Dam
adopts for the interface sophisticated discretmefa edge/edge contact models, Bretas (2012).

The shear sliding analysis of a gravity dam wit®.00m height is performed. A bi-dimensional plane

strain model is adopted, where the concrete damtarfidundation are represented by adjacent elastic
blocks that interact with each other through thaccete/foundation interface. Several parametric
studies are presented where the peak ground aatieferthe damping model and, the foundation

stiffness influences are evaluated. The performaricthe different structural programs adopted is

compared, namely the interface models.

2.NUMERICAL MODELS
2.1. Introduction

The shear sliding structural analysis was performigd two structural analysis programs that follow

an explicit time domain solution algorithm. In bgitograms, a 4 node plane strain finite element is
adopted in the dam and foundation discretizatidgre programs are similar in all aspects excepteén th

models adopted for nonlinear interfaces.

The programParmac2Dcan adopt either, zero thickness interface elesneiathberg (1992), small
displacement analysis, following a two point Lobaititegration rule, Fig. 1a, or a discrete element
model based on a simplified circular particle/edgeraction, Azevedo and Lemos (2006), Fig. 1b,
that allows large structural displacement at thterface. In a simplified manner the finite elements
edges representing the dam are discretized withlesmaner circular particles that are allowed to
interact with the edges of the finite elements @éspnting the foundation boundary. The contact kengt
of each patrticle/edge contact is directly givently particle circular radius, but the contact can b
transferred from one finite element edge to theeljt as the calculation progresses and the contact
displacement increases.

The programDec-Dam adopts an elaborated edge/edge contact followindisarete element
methodology, full implementation details can berfdun Bretas (2012). As the calculation evolves it
is able to recognize new possible finite elememeet finite element edge contacts. It also updates
the contact geometry, including the contact lengthhe existing contacts, Fig. 1c.
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Figure 1. Contact models for dam/foundation interface joint

When the structural program predicts significaneasshdisplacements at the concrete/foundation



interface, a contact methodology that allows lagdggplacements should be considered. A discrete
element or a finite element approach that allowgdalisplacement should be adopted for the interfac
model as it will be shown.

In the examples here presented a linear elastiehveals adopted for the dam and for the foundation
plane elements. For the dam/foundation interfacerdinear Mohr-Coulomb without cohesion was
adopted in all contact models, following the Pourige dam design recommendations.

2.2. Loading considerations

On a shear sliding scenario analysis the self-vieajhthe dam, the hydrostatic pressure acting
upstream, corresponding to a reservoir level atrigst and the uplift pressure at the dam/foundatio
interface are the main static forces to be consitler

When a drainage system is installed, a bilineagrdia along the dam/foundation interface is adopted.
A 2/3 reduction of the hydraulic head at the diacation is usually considered. At the upstream and
at the downstream faces the hydraulic head is diyethe corresponding water level. More elaborated
models that apply a hydromechanical analysis tHragne-way coupling can be adopted if required,
Lemos (1999) and Bretas (2012).

Prior to the seismic analysis, a seismologicalysfod the dam location should be performed in order
to characterize the peak ground horizontal acdsderand the corresponding time records. In this
work, in a simplified manner, the vertical seisrm@mponent is given by scaling with a factor of 2/3
the horizontal acceleration records. The verti@ahponent of the seismic action can increase the
shear sliding values that are predicted, for thason it is important to adopt a model that alltives
consideration of both components.

Earthquake loading is represented by an upward mgoplane wave as shown in Fig. 2, Lemos
(1999). At the bottom boundary quiet boundary ctods are adopted and the dynamic input is
applied as a stress wave. The viscous boundaryufation proposed by Lysmer and Kuhlemeyer
(1969) is adopted. At some distance from the daee-field conditions occur. Numerically this is
accomplished by supplying to the model lateral lhawies where the free-field conditions are
established, a thorough description of the freleHimplementation can be found in Lemos (1999).

Several models are available for the dynamic icteya between dam and water reservoir, namely the
Westergaard added mass approach, Westergaard (883B8yler formulation for the fluid, Cervera et
al. (1995), or a Lagrangian fluid formulation, Wifsand Khalvati (1983). In this work the simplified
added mass concept is followed, with this purpbsenbdal points at the dam upstream face have their
mass increased in the normal direction to the apsirface.

2.3. Rayleigh damping

In structural dynamics Rayleigh damping is commcedppted give its simplicity and the control it
allows over modal damping ratios, namely for linedastic analysis. In Rayleigh damping, the

damping matri><£C], is given by:
[c]=alm]+KK] (2)

where, @ and k are damping coefficients associated to thssnmatrix, [M], and to the stiffness
matrix [K], respectively. The mass proportionahteof the Rayleigh damping corresponds physically
to linear viscous dampers connecting the strucha#al points to external supports, whereas the
stiffness proportional term corresponds physicétlylinear viscous dampers that interconnect the
structural nodal points, Hall (2006). The coeffitea e k can be defined using:
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where, &, 1S the fraction of the critical damping for thegat mode andx, ., is the corresponding

vibration mode frequency with the lowest modal damp pointed out in Hall (2005) the mass
proportional term is not a real physical mechanisihen the damping formulation is in global
coordinates, rigid body motion can lead to errosedamping forces if the mass proportional term is
present. This can occur in a shear sliding scenkdo this reason, in Hall (2005) it is proposedtth
only the stiffness term should be adopted. HalDB)Galso proposed a maximum threshold value of
the damping forces associated with the stiffness i@ order not to introduce erroneous extremely
high stiffness damping forces.

In Fig. 3 it is shown the modal damping percentagéerms of the vibration frequency, for a 5%
damping ratio for a target frequency of 1.76 HzeThass proportional term highly damps modal
responses with small frequencies, as referred &efos can lead to erroneous damping for rigid body
sliding modes. In high frequencies, the mass pitagal term has a small contribution, this as il wi
be shown in the case studies here presented, adndéiigher shear sliding displacement values when
compared to the examples where Rayleigh dampirggligpted, or when only the stiffness term is
included.

In the analysis carried in this work, for the raasonentioned above, the effect of the stiffness and
mass viscous damping are analyzed in separateofthe Rayleigh damping terms may erroneously
overdamp the mechanism that triggers the failurdeno
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Figure 2. Boundary conditions for seismic analysis Figure 3. Rayleigh damping
2.4. Modelling sequence

In the initial stage the dam self-weight and therbgtatic pressure at the upstream face are applied
adopting a linear behavior for the dam/foundatioteriface. Next, the nonlinear interface model is
adopted and a static analysis starting from thealirelastic equilibrium is carried out. Finallyeth
uplift pressure at the interface is considered anstatic analysis is performed. During the static
loading, the base and the lateral boundaries ofdtedation have zero displacements in the normal
direction to the corresponding faces.

At the end of the static loading, the supportsrapaced by the equivalent static reactions and the
Westergaard equivalent hydrodynamic masses aredaidéhe upstream face nodal points in the
direction normal to the upstream face. In a seaade a time domain dynamic analysis is performed,
where the earthquake loading is represented bywaand moving plane wave in the horizontal and in
the vertical direction. In this work, in a simpéii manner, the vertical seismic component is gbsen
scaling with a factor of 2/3 the horizontal accatem record.



3. CASE STUDY
3.1. Introduction

The shear sliding of a gravity dam with 100.0 mgheiis carried out, Fig. 4. The numerical model
consists of two different blocks, dam and foundatibat interact between them through the interface
zone, Fig. 5. The foundation block is represente®b/ plane 4 node strain finite elements, and the
dam block is discretized with 435 plane 4 nodeirstfmite elements. Table 1 shows the material
properties adopted for the dam and the foundafisrindicated, three different scenarios are adopted
for the foundation elastic stiffness. Both the fdation block and the dam block follow a linear gtas
model.

Table 3.1. Material properties

Danr | Foundatior | Foundatiol | Foundatiol
Z1 Z2 Z3
Young Modulus [GP: | 24,C | 10,C 17,C 24.,C
Poisson Coefficiel 0,1¢€ | 0,17¢ 0,17t 0,17t
Density [kg/n3] 2,30 | 2,6F 2,65 2,65

N 075
N
AN

100,

Figure 4. Dam monolith geometry Figure 5. Mathematical models for non-linear response historglysis
For the dam/foundation interface a Mohr-Coulombstivutive law without cohesion was adopted for
all the interface models under analysis. Tablees@nts the mechanical properties that were adopted
for the nonlinear interface.

Table 3.2. Interface Joint Elastic and Strength Properties

Foundation:
71,72 & 73

Normal stiffness [GPa/m] 24,0

Shear stiffness [GPa/m] 8,0

Friction angle [?] 45,0

Cohesion [MPa] 0.0

Tensile strength [MPa] 0.0

The static loads considered where the self-wei§thedam, the hydrostatic pressure at the upstream
face corresponding to a reservoir level at thet@ed the uplift pressure. For the uplift pressureas
considered a bilinear diagram with a 2/3 reductbthe hydraulic head at a distance of 7,5 m from
the dam upstream heel. This is the zone wherertdiratje system is considered to be installed.

For the maximum design earthquake, MDE, two acagters records were adopted for the vertical
and for the horizontal components, Fig. 6. Theyend®fined based on a fault model, Carvalho (2007),
for a peak ground acceleration of 04,7Fig. 6. The records were then scaled for therséyeak
ground acceleration values analyzed.
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Figure 6. Accelerograms for maximum design earthquake (hot&a vertical components)
3.2. Modal analysis

In the dynamic analysis of gravity dams Rayleigmgang centred in the fundamental modal response
frequency is commonly adopted, Bureau and Kell80%). For this reason it is required to perform a
modal analysis in order to find the fundamentalqfiency of the model. This was performed
considering a massless foundation and adoptingMastergaard added mass at the upstream face
degrees of freedom in the direction normal to Hweef reservoir level at the crest. Table 4 pregdbets
fundamental frequencies for each type of foundatidfness under analysis.

Table 3.3. Fundamental frequency — Full reservoir

Mode 1 Foundationn Foundation| Foundation
Z1 Z2 Z3
Vibration frequency [Hz | 1,76 2,0€ 2,2€

3.3. Peak ground acceleration effect

In order to evaluate the peak ground acceleraf@W®, effect and to assess the performance of the
interface models several PGA values were adopteé®# @ 0,68 g and 1,02g. For the vertical
component a 2/3 reduction factor was considered. dteleration records presented in Fig. 6, were
then scaled in order to reproduced the desiredereti®n. Only the foundation Z1 was studied.

Three possibilities of damping were considered, |8gy damping (MK), stiffness proportional
damping only (K), and mass proportional dampingydqiM). The mass term contribution was only
considered in the dam block. The stiffness terntrdmtion was considered at the dam block and at
the dam/foundation interface. In all cases the dagponstants were defined in order to have a
critical damping ratio of 5% at the fundamentaprasse frequency, Table 3.3.

Fig. 7 shows the normal effective stress at the/ftamdation interface, prior to dynamic loading fo
the several contact interface models under analysis thickness interface finite element, Parmac2D
FE, simple discrete element approach based oncledetige contact, Parmac2D-DE and complex
discrete element approach based on edge/edge taxaeDam.

From Fig. 7, it can be verified that for small d&sgement analysis and under static response the
Parmac2D-FE and the Dec-Dam predict similar diagrafhis is related with the fact that on the
finite element implementation a two point Lobattategration rule is adopted, whereas in the
edge/edge discrete element interaction two spangjse edge ends are adopted. It can also beegbrifi
that the Parmac2D-DE response adopting around gklpa with 0,1 m radius on each dam finite
element edge, Fig. 1b) has a tendency to predittelhllower stress values being more influenced by
the stress singularities known to occur at the Hari and the dam toe.

The shear sliding displacement predicted at the loexeh for the several PGA values, for the different
interface models and for the different damping apphes, is presented in Fig. 8. It can be seen that
the different contact models lead to similar bebafor lower PGA values. For higher PGA values it
can be verified that there is a difference in tgponse of the interface models that follow a discr
element approach and the response of the finiteezle approach. For significant shear displacement
values, displacements higher than 15,0 mm whickespond to 3% of the plane element edge length



at the interface, 5 m, it is mandatory to adopinéerface model that allows large displacements.
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Figure 7. Normal effective stress distribution at the damffdation interface before to seismic analysis
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Figure 8. Time history of shear displacement at the dam deehg seismic analysis — Foundation Z1

For PGA values higher than 0,84 the damping term proportional to the mass, Mddet higher
shear displacement values when compared with Reyléamping, MK, and stiffness proportional

damping only, K, for all the different interface des. It would be expectable that higher shear
displacement would be related with higher rigid yostiding motions, and that consequently the mass
damping term would include erroneous damping vawiésout any physical meaning. The fact that
this does not occur may be related to the fact thass proportional damping provides smaller
damping ratios for higher vibration modes. Thegghtitequencies response can then trigger a rocking

mechanism that is followed by shear sliding.

Fig. 9 shows the time history of shear sliding ammimal effective stress at the dam heel for the

Parmac2D-FE interface, and for two values of PGA4§ and 1.0y. Only the stiffness damping and
the mass proportional damping are showed. It cavebiéied that sliding increases after a peak im th

normal effective stress at the dam heel, and &lsbrhass proportional damping predicts higher peak
normal stress values which are obviously followgdabdecompression or interface opening at the
zone in question. For higher PGA values this effscamplified which then leads to higher shear

sliding displacements when mass proportional daghigimdopted.

Note that, the shear sliding predicted at the dagi I not fully related with rigid body motion tife



dam as it also includes some of the transversarihaition related to the fact that the dam heel is
decompressed for the initial static loading, Figlt7s important to control the shear displacemeait
the dam toe and at the drainage area. Damage dtahmage area due to shear sliding has a positive

effect in the increase of the uplift pressure, Whidgll lead to an increase in the total value oéah
displacement during the MDE.

From the results here presented one can concladeatheast two different damping analyses should
be performed, proportional mass damping only aoggntional stiffness damping only. Beforehand it
is not possible to exclude one of them as the dagngipproach that will predict higher shear
displacement values. It is also shown that afteeréain level of shear sliding it is important ot

an interface model that allows large displacemdrasmac2D-DE and Dec-Dam.
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Figure 9. Time history of shear displacement and normal sta¢she dam heel — Foundation Z1

3.4. Foundation stiffness effect

The foundation stiffness effect on the shear djdiesponse was only evaluated for a PGA value of
0,68 g. All the interface models and all the damping apphes were analyzed. In all cases the
damping constants were defined in order to haveti@at damping ratio of 5% at the fundamental

response frequency, Table 3.3. The same normadtzest stiffnesses were adopted on all cases, Table
3.3.

Fig. 10 shows the normal stress distribution atdw®/foundation interface, prior to the MDE loading
for different foundation stiffness values. As mentd before the Parmac2D-FE and the Dec-Dam
interface model lead to similar static distribuspwhereas the interface model adopted in Parmac2D-

DE predicts slightly different diagrams given istlency to follow the singularity values that ocatir
the dam heel and dam toe.
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Figure 10. Normal effective stress distribution at the damfdation interface before to seismic analysis —
Foundation stiffness

From the static loading distribution it is possilteverify that as the foundation stiffness incesas
there is a tendency to increase the stress atigak and to decrease the stress value at théekim
Fig. 10. The shear sliding displacements at the Hdaei for mass proportional damping, stiffness
proportional damping and Rayleigh damping for theB/are presented in Fig. 11.



As shown in Fig. 11 an increase in the foundatidmess does favour an increase in the sheamglidi
displacement value. This can be related to the tla&t as the foundation stiffness increases the
decompression zone at dam/foundation interfaceasss.
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4. CONCLUSION

The shear sliding analysis of a concrete gravity @apresented. For lower peak ground acceleration,
PGA, values, a finite element joint interface modarmac2D-FE, formulated in small displacements,
predicts similar shear displacement values thaningerface model adopting a discrete element
particle/edge methodology, and an interface mod#dpang a complex edge/edge interaction

following a discrete element methodology, bothwliw large displacements.

For shear displacements higher that 3% of the pldement edge, it is shown that it is important to
adopt a contact interface formulation that hantiege displacements at the interfaces, either based
discrete or finite element technology. Note that thterface model adopted in Parmac2D-FE is
computationally less demanding than the modelsdasediscrete element methodology given the
required geometrical updated.

The results here presented also show that it iitapt to study separately the effect of mass
proportional damping and stiffness proportional garg. For the dam geometry studied and for PGA
values lower than 0,34, it is shown that mass proportional damping leads to lostar sliding
displacements as expected because mass propodamaing may include erroneous damping forces
when a structure is under rigid body motion.

For PGA values higher than 0,88it is shown that the mass proportional dampingldet higher
shear sliding values. This can be related to tlee tfzat mass proportional damping does not filter
properly high frequencies. These high frequenciedize trigger for a failure mechanism based more
on rocking. When applying design guidelines inigportant to obtain conservative responses.



It is also shown that foundations with higher s#fs favor an increase of the shear sliding
displacement due to the maximum design earthqudid. The nonlinear Mohr-Coulomb model
without cohesion adopted at the dam/foundationrfiate is very sensitive to the normal effective
stress installed, and foundations with higher rsti$s have the tendency to decrease the stress at th
dam heel.
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