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SUMMARY  
Current seismic codes require from the seismically designed structures to be capable to withstand inelastic 
deformations. Many studies dealt with the development of different inelastic spectra with the aim to simplify the 
evaluation of inelastic deformation and performance of structures. Recently, the concept of inelastic spectra has 
been adopted in the global scheme of the performance-based seismic design through capacity-spectrum methods. 
In this paper, the median of the ductility demand ratio for 80 ground motions is presented for different levels of 
normalized yield strength, defined as the yield strength coefficient divided by the peak ground acceleration 
(PGA). The influence of the post-to-preyield stiffness ratio on the ductility demand is investigated. Determined 
by regression analysis of the data, two design equations have been developed; one for the ductility demand as 
function of period, post-to-preyield stiffness ratio, and normalized yield strength, and the other for the inelastic 
deformation as function of period and peak ground acceleration valid for periods longer than 0.6 seconds. The 
equations are useful in estimating the ductility and inelastic deformation demands for structures in the 
preliminary design. It was found that the post-to-preyield stiffness has a negligible effect on the ductility factor if 
the yield strength coefficient is greater than the PGA of the design ground motion normalized by gravity. 
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1. INTRODUCTION 
 
Since the development of the Capacity-Spectrum Method (CSM) (Freeman et al. 1975), many 
response spectra have been proposed to replace the conventional elastic spectra in order to achieve 
accurate evaluation of the inelastic response of structures. Newmark and Hall (1973) proposed 
inelastic response spectra of 5% damped single degree of freedom (SDOF) system based on the elastic 
spectra. 
 
Sheng and Biggs (1980) constructed inelastic response spectra for different ductility ratios and 
damping coefficients. Iwan (1980) and Kowalsky (1994) developed empirical equations to define the 
period shift and equivalent viscous damping ratio to estimate the maximum displacement demand of 
inelastic SDOF system from its linear representation. Ridell et al. (1989) introduced reduction factors 
for constructing inelastic design response spectra from elastic spectrum. Similarly, Krawinkler and 
Nassar (1990) studied strength reductions by using 33 ground motions recorded during the 1989 
Whittier Narrow, California earthquake. Later (1991), they evaluated the average inelastic spectra of 
bilinear and stiffness degrading systems subjected to 15 ground motions and proposed a functional 
form of the reduction factor with respect to ductility factor, natural period and post-to-preyield 
stiffness ratio. Similarly, Miranda (1992) used 124 ground motions recorded during various 
earthquake events. Emphasis is given to the influence of soil conditions on the inelastic strength and 
deformation demands of SDOF systems. 
 
The use of inelastic design spectrum in the context of capacity-spectrum methods was suggested by 



Bertero (1995), and introduced by Reinhorn (1997) and Fajfar (1999). Recently, Miranda (2000) 
proposed procedures based on displacement modification factors in which the maximum inelastic 
displacement demand of multi-degree of freedom (MDOF) system is estimated by applying certain 
displacement modification factors to maximum deformation of equivalent SDOF system having the 
same lateral stiffness and damping coefficient as that of MDOF system. In another study, Miranda and 
Ruiz-Garcia (2002) evaluated six possible alternative methods to estimate the maximum inelastic 
deformations of SDOF systems. The evaluated methods estimate the maximum inelastic deformation 
using functions of displacement ductility factor to compute equivalent periods and equivalent damping 
ratios (Rosenblueth and Herrera 1964; Gulkan and Sozen 1974; Iwan 1980; Kowalsky 1994), or to 
compute displacement modification factors (Newmark and Hall 1982; Miranda 2000). The study 
aimed at evaluating the accuracy of approximate methods for the preliminary design of structures. 
Later, Akkar and Miranda (2002) conducted a statistical evaluation of five of the above methods. The 
study showed that for periods longer than ����� all methods produce relatively good results. In the 
short period region, equivalent linear methods proposed by Iwan and Guyader and the one proposed 
by Kowalsky tend to overestimate deformation demands. The errors produced by any of the evaluated 
approximate methods can be relatively larger, particularly for lateral strength ratios larger than four. 
 
In this paper, we first present the development of the ductility demand response spectrum. This is 
followed by the development of the response spectra for four selected data-sets of ground motion 
records, each containing 20 records representing short to long magnitude and short to long distances 
from fault. The influence of the post-to-preyield stiffness ratio on the ductility demand is investigated. 
Next, nonlinear regression analysis of the data is conducted, two design equations are developed; one 
for the ductility demand as function of period, post-to-preyield stiffness ratio, and normalized yield 
strength, and the other for the inelastic deformation as function of period and peak ground acceleration 
valid for periods larger than 0.6 seconds. The equations are useful in estimating the ductility and 
inelastic displacement demands for structures in the preliminary design. 
 
 
2. DUCTILITY DEMAND RESPONSE SPECTRUM 
 
2.1. Equation of Motion in Terms of Ductility 
 
Considering an inelastic single-degree of freedom system, its motion when subjected to an earthquake 
ground motion is governed by the following equation: 

 
��� 	 
�� 	 ��� �� � � �������                                                                                         (2.1) 

where, �, c, and � represent the mass, damping, and the resisting force of the system, respectively, 
����� denotes the earthquake acceleration. The resisting force � is defined as the sum of a linear part 
and a hysteretic part: 
 

� � ��� 	 ��                                                                                                                      (2.2)�

In the above, �� is the postyield stiffness, � is the yield strength, and � represents the dimensionless 
variable that characterizes the Bouc-Wen model of hysteresis (Bouc, 1971; Wen, 1976), it is given by: 
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In the above equation, �$ is the yield displacement, and��, !, �, and "�are parameters that control the 
shape of the hysteresis loop. Material degrading is not considered in this study. However, to 
accommodate material degradation in the hysteresis model, the Baber-Noori (Baber and Noori, 1985) 
version of the Bouc-Wen model may be used. 
 
Substituting Eqn. 2.2 into Eqn. 2.1 and dividing by � yields: 
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Or simply: 
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In which &,�', -, and / represent the damping ratio, circular frequency, post-to-preyield stiffness ratio, 
and the yield strength coefficient (defined as yield strength divided by the system weight 1: 1 � �0, 
g stands for the gravity), respectively. 
 
Next, Eqn. 2.5 is rewritten in terms of displacement ductility factor, 2. Substituting: � � ��$2, 
�� �� � �$2� , and �� �� � �$2� , and in Eqn. 2.5 and dividing by �$ gives: 
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By doing the same to the dimensionless variable �, Eqn. 2.3 may be expressed in terms of 2�  as: 
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The term 3,��
 in Eqn. 2.6 is rewritten as: 
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Solving Eqn. 2.8 for �$ yields: 
 

�$ � 3,
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Substituting Eqn. 2.8 and Eqn. 2.9 into Eqn. 2.6 gives: 
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We observe from Eqn. 2.10 that for a given ground acceleration, 2�� depends on &,�', -, and /. 
 
2.2. System Controlling Parameters and Normalization 
 
To obtain meaningful system response to an ensemble of ground motions, the system yield strength 
coefficient has to be defined relative to the intensity of individual ground motions. Using the 
parameter : introduced by Mahin and Lin (1983) as: 
 

: � 3,
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where, =>� stands for the Peak Ground Acceleration. Incorporating : into Eqn. 2.10 results: 
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In which, ���represents the ground acceleration normalized with respect to the�=>�: 
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The ground acceleration has been normalized such that its value varies from -1 to 1. Eqn. 2.12 implies 
that for a given inelastic system, if - and : are fixed, the intensity of the ground motion has no effect 
on the peak normalized deformation, 2. This permits the construction of the ductility response 
spectrum for an ensemble of ground motions with common frequency content but variable intensity. 
 
2.3. Constant�C Ductility Response Spectrum 
 
The procedure to construct the ductility response spectrum for inelastic systems corresponding to 
specified levels of normalized yield strength :, is summarized in the following steps: 
 
1. Define the ground motion ��,��; 

 
2. Select and fix the damping ratio & and the post-to-preyield stiffness ratio D (D = 0 for elastoplastic 

system) for which the spectrum is to be plotted; 
 
3. Specify a value for :; 
 
4. Select a value for elastic period E; 
 
5. Determine the ductility response 2�� of the system with E, &, and - equal to the values selected by 

solving Eqn. 2.12 along with Eqn. 2.7. From 2�� determine the peak ductility factor 2; 
 
6. Repeat steps 4 and 5 for a range of E, resulting in the spectrum values for the : value specified in 

step 3; 
 
7. Repeat steps 3 to 6 for several values of : 
 
Given the excitation and the properties E, &, -, and : of an inelastic SDOF system, it is desired to 
determine the peak deformation, �*. The yield displacement of the system is derived from Eqn. 2.9 
and Eqn. 2.11 as follows: 
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The value of the ductility factor is read from the spectrum developed by the above procedure and 
multiplied by �$ to obtain the peak deformation, �*. 
 
 
3. STATISTICAL ANALYSIS 
 
Based on statistical analysis of response data, the nonlinear spectra are developed next. Four 
ensembles of ground motions, each with 20 records, are included in this study. The ensembles, 
denoted by LMSR, LMLR, SMSR, and SMLR represent four combinations of large (F � G�G � G�H) 
or small (F � I�J � G�I) magnitude and short (K � �L � L����) or long (K � L� � G����) 
epicentral distance. These motions were obtained from PEER Strong Motion Database, first used by 
H. Krawinkler; their parameters are available in (Chopra et al. 2003). 
 
3.1. Median Ductility Demand 
 
Median normalized spectra were computed for each ground motion of the four ensembles. Median 
ductility-demand spectra for LMSR ensemble are shown in Fig. 3.1 and Fig. 3.2 as a function of E for 
fixed damping ratio & = 5%; all results presented in this paper are for this damping ratio. The spectrum 
is divided logically into three period regions according to the procedure described in Chopra (2001), 
where EM marks the transition from the acceleration-sensitive region to the velocity-sensitive region 
which ends at EN 3s. The acceleration-sensitive region is divided judgmentally into two regions at 



E � EO, at this point the spectrum would be easily idealized by a series of straight lines. 
 
The results for fixed post-to-preyield stiffness ratio (Fig. 3.1) permit the following observations on 
how the normalized yield strength influences the inelastic action indicated by 2 in various spectral 
regions. For systems having a normalized yield strength : P �, 2 decreases rapidly with an increase of 
the normalized yield strength. For systems having : Q �, in the acceleration-sensitive region, starting 
at 2 � ��at E� � �EO �� ������, 2 increases for shorter periods where 2 is affected little by :. For 
periods between EO �and EM � ���G��, the ductility demand is essentially constant and affected little by 
:. For periods larger than EM, the ductility demand decreases in a manner similar to systems with 
: P �. 
 
From Fig. 3.1 for fixed ductility factor, and consistent with previous studies (e.g., Newmark and Hall 
1982, Bozorgnia et al. 2010, among others) it is clear that the yield strength can be substantially 
reduced if a moderate level of ductility (e.g., 2 � �%) is sustained by the structure. Larger available 
ductility can only result in a moderate reduction in the strength demand, especially for periods larger 
than ��I��. The results for constant�: plots in Fig. 3.2 indicate that the post-to-preyield stiffness ratio 
has no effect on the median ductility demand for systems having�: Q �. For systems with : P � the 
Post-to-preyield stiffness ratio reduces the ductility demand only for periods shorter than EM, and for 
periods greater than EM, - has a small effect on the ductility factor. 
 
Computed from the data of Fig. 3.1 and Fig. 3.2, the ratio of median 2 for bilinear and elastoplastic 
systems is plotted in Fig. 3.3 against T for fixed - and a range of : values. Fig. 3.3 indicates that the 
amount of reduction in ductility factor due to post-to-preyield stiffness ratio - is roughly constant for 
periods greater than EM, increases for shorter periods (E P EM), and disappears for all range of periods 
for : Q �. This observation implied that ignoring post-to-preyield stiffness ratio in estimating the 
ductility demand is too conservative for seismic evaluation of existing structures with periods in the 
acceleration-sensitive region; this is similar to what Chopra and Chintanapakdee (2004) concluded. 
However, the post-to-preyield stiffness ratio may be ignored in estimating the ductility demand for 
structures with short periods (E P EM) if they have a normalized yield strength greater than 1. In other 
words, for a particular ground motion characterized by PGA, one may ignore the effect of the post-to-
preyield stiffness ratio in evaluating structures with periods shorter than ��G�� (low rise buildings) if 
their yield strength coefficients are greater than the PGA normalized by  . 
The results for constant�: plotted in Fig. 3.2 indicate that regardless the post-to-preyield stiffness 
ratio; the response of systems is elastic in the following cases: 
 

• : � ��%I and E Q �L�� 
• R � ��I and S Q �%�T 
• : � ��UI and E Q ��VI�� 
• : � ��and�E Q ����
• : � ��I�and�E Q ��UI���
• : Z ��I�at all periods��

 
Study of the dispersion of the ductility demands was conducted by computing the coefficients of 
variation (COV) for each ensemble of ground motions. Fig. 3.4(a) shows the dispersion of 2 as a 
function of natural period for - � L[ and different levels of normalized yield strength, while Fig. 
3.4(b) shows the dispersion of 2 for : � � and different post-to-preyield stiffness ratios for LMSR 
ensemble of ground motions. It can be noted that, in general, dispersion of ductility demands is not 
constant over the whole spectral regions and it depends on the natural period T and the level of 
normalized yield strength :. In general, dispersion increases as period of vibration increases, this is the 
case because the PGA has been used in the normalization. However, this study concerns systems 
having periods in the acceleration and till velocity-sensitive region. The post-to-preyield stiffness ratio 
has little effect on the dispersion, especially for periods larger than ���. 



 
 
Figure 3.1 Median ductility demand for inelastic systems computed for LMSR ensemble of ground motions 

 (: = 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5 from top line to bottom line). 
 
3.2. Effect of Earthquake Magnitude and Distance 
 
The computations that led to the preceding subsection were repeated for the LMSR, LMLR, SMSR, 
and SMLR of ground motion ensembles. The median 2 versus T functions are quite similar, this is 
demonstrated in the plots for the four ensembles shown in Fig. 4.1. This similarity has been observed 
by Chopra and Chintanapakdee (2004) in the plots of \] and \^ coefficients versus T. 
 

 
 

Figure 3.2 Influence of post-to-preyield stiffness ratio - (- = 0%, 3%, 5%, 10% from top line to bottom line) 
on the median of ductility demand 2 for inelastic systems subjected to LMSR ensemble of ground motions, 

presented for fixed values of normalized yield strength : = 0.5, 1, 1.5, and 2. 



 

 
 

Figure 3.3 Ratio of median ductility demand 2 for bilinear and elastoplastic systems: (a) influence of : for - 
=3% and (b) influence of : for - =5%. 

 

 

Figure 3.4 Dispersion of ductility demand 2 for inelastic systems subjected to the LMSR ensemble of ground 
motions: (a) influence of normalized yield strength : at post-to-preyield stiffness ratio - =3% and (b) influence 

of - for : =1.  
 

4. ESTIMATING OF DUCTILITY AND INELASTIC DEFORMATION DEMANDS 
 
Presented next is an equation that fits the median 2 data for any of the four ensembles of ground 
motions, starting from EO. Such an equation for 2 has been derived in terms of the normalized yield 
strength :, post-to-preyield stiffness ratio -, and period of vibration T: 
 

2 � OM�_`ab�cde
?                                                                                                                   (4.1) 

 
 

Figure 4.1 Comparison of ductility demand 2 for LMSR, LMLR, SMSR, and SMLR ensembles of ground 
motions: (a) 2 for - =0% and : =1; (b) - =3% and : =1. 

 



Table 4.1 Parameters in Eqn. 4.1 and 4.2 for each value of : and - 

Parameters 
: P � 

:� Q �  (all values of -) -�[� 
0 3 5 10 

f 1.24 1.12 1.08 1.04 1.23 
g 0.98 0.94 0.92 0.88 0.85 

 1.69 1.65 1.68 1.68 1.21+: 

 
The numerical parameters f, g, and 
 were determined from the response data by nonlinear regression 
analysis using Datafit software (Oakdale Engineering) and they are tabulated in Table 4.1 for different 
ranges of : and -. However, for values of :� Q � and periods larger than EM, the post-to-preyield 
stiffness ratio is ignored since it has little influence on the ductility factor. For :� Q � and for periods 
between EO and EM, ductility is observed to be nearly independent of period T, depending on the value 
of : and - (see Table 4.2). Figure 4.2 shows that Eqn. 4.1 agrees well with median h computed for the 
LMSR ground motions. The inelastic deformation �* can be determined by multiplying the ductility 
factor computed from Eqn. 4.2 by the yield displacement �$ determined from Eqn. 2.14: 
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Table 4.2 Values of ductility 2 for EO n E P EM 

R D (%) 

0 3 5 10 

1 - 2.5 2 1.65 

1.5 1.5 1.4 1.3 1.3 
EO= 0.1s, EM= 0.6 s 
 
Eqn. 4.1 and Eqn. 4.2 show an advantage over the coefficients like \] and \^ that require the 
determination of the elastic response first. In addition, for periods longer than EM � ��G�� a unified 
equation is found to fit the median ductility demand: 
 

2 � 67589�
? ���%UEo�pi                                                                                                       (4.3) 

 
The median inelastic deformation �* is then determined using Eqn. 2.14 for the yield displacement: 
 

�* � ���%U�Eo�pi=>�                                                                                                         (4.4) 
 
This equation provides the deformation for a given median PGA that reflects the intensity of the 
design ground motions, regardless the yield strength and post-to-preyield stiffness ratio.  
 
5. CONCLUSIONS 
 
The main goal of this study was to estimate the displacement ductility and inelastic deformation 
demands for structures. For this purpose, the ductility demand 2 was defined. The following 
conclusions can be drawn from the results of this study: 
 
1. For systems with normalized yield strength smaller than one, the ductility factor decreases rapidly; 

this factor is very sensitive to the yield strength. 
 

2. For systems with a normalized yield strength greater or equal to one, 2 decreases in the 
acceleration sensitive region and it is affected little by the value of :. 

 
3. For systems with periods between ����� and ��G�� and normalized yield strength greater or equal to 



one, the ductility demand is essentially constant. 
 
4. For systems with :> 2, the response is elastic regardless the period of the system. 
 
5. The post-to-preyield stiffness ratio has no effect on the median ductility demand for systems with a 

normalized yield strength greater than one. For systems with normalized yield strength smaller than 
one, the post-to-preyield stiffness ratio reduces the ductility demand only for periods longer than 
��G��, and has essentially little effect on the ductility demand for longer periods. 

 
6. Consistent with other studies, the yield strength can be substantially reduced if a moderate level of 

ductility is sustained by the structure (say 2 = 2). Larger available ductility can only result in a 
moderate reduction in the strength demand, especially for periods larger than ��I��. 

 
7. Ignoring post-to-preyield stiffness ratio in estimating the ductility demand is too conservative for 

seismic evaluation of structures with periods in the acceleration-sensitive region. However, the 
post-to-preyield stiffness ratio may be ignored when the normalized yield strength is greater than 
one. 

 

 
 

Figure 4.2 Comparison of ductility demand 2 estimated by Eqn. 4.1 with computed data for LMSR ensemble 
of ground motions for: (a) elastoplastic systems (- =0%) and (b, c, d) bilinear systems (- =3%, 5%, 10%). 

 
 
8. For the selected accelerograms, it was shown that the ductility demands are not affected by the 

earthquake magnitude nor by the epicentral distance. 
 
9. The dispersion of 2 is not constant over the whole period range; it depends on E and :. 
 
10.  Simplified equations for ductility and inelastic deformation demands for inelastic systems with 

periods shorter than L�� have been developed. These equations are simple and provide a good 
estimation of median ductility demand and inelastic displacement of new or rehabilitated structures 
when the yield strength is known. 

 
 

Eq. 4.1 
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