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SUMMARY: 

A simply supported single-span steel bridge model was used to evaluate the capability of Wavelet and Hilbert-

Huang Transforms for system identification of structures with time changing dynamic properties. The bridge was 

excited using an electro-dynamic shaker located near the bridge mid-span. The frequency band of the induced 

noise excitation was controlled to examine its effect on the efficiency of the signal processing methodologies. In 

order to introduce a discontinuity and a frequency shift in the response of the bridge, mass was added (or 

removed) during each test. The results obtained show that if both, high and low frequencies analyzes are used, 

one can get a more clear idea of the changes undergone by the structure. It was also noticed that increasing the 

high frequency content of the excitation has a detrimental effect in the efficiency of the signal processing 

techniques evaluated. 
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1. INTRODUCTION 

 

This paper presents an experimental evaluation of Wavelet and Hilbert-Huang approaches for 

identification of natural frequencies changes in systems subjected to random excitations, special 

emphasis is placed on the effect of different levels of frequency content in the load excitation. First, 

Wavelet and Hilbert Huang transforms are briefly introduced and their parameters are calibrated using 
a toy signal with frequency variations similar to the observed on the experimental tests. Once the 

parameters of both transforms are calibrated using the simplified artificially generated signal, the 

accelerations recorded during the experimental tests are examined. 
 

 

2. HILBERT – HUANG TRANSFORM (HHT) 

 

The Hilbert Transform (HT) is perhaps the easiest ways to compute the instant frequency and instant 

amplitude of a mono-component signal. The HT of a function x(t) is defined as:  

 

( )[ ] ( )
∫

∞+

∞− −
= τ

τ
τ

π
d

t

x
txH

1
                                                                                                      (2.1) 

 
With the HT, the Gabor analytic signal z(t) (Gabor 1946) of the function x(t) can be generated as: 
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The analytic signal decomposes a signal in their instant amplitude a(t) and instant phase θ(t) 

component, the instant frequency (IF) is defined as the time derivative of the phase: 
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If applied to a multi-component signal, the HT will still identify only one instant frequency that 

represent the average of the frequencies occurring in the signal. Multi-component signals need to be 
first decomposed into its mono-components constituents using methodologies like the Empirical Mode 

Decomposition (Huang et al. 1998), the Hilbert Vibration Decomposition (Feldman 2006), the 

Synchrosqueezed Transform (Dabuchies et al. 2011) or band-pass filtering. In this work the Empirical 

Mode Decomposition (EMD) algorithm is employed, which is perhaps the most popular of these 

methodologies. The process of applying the EMD and then the HT individually to the mono-

components (or Intrinsic Mode Functions IMFs) is known as the Hilbert-Huang Transform (HHT). 
The EMD is an iterative sifting algorithm where the signal is decomposed into IMFs and a residue. 

These IMFs are defined so as to ensure that they have well-behaved HTs and conform to a narrowband 

condition. The EMD was implemented in this work by means of the algorithm provided by Rilling et 
al. (2003). In this algorithm the stopping criteria for sifting is aimed at guaranteeing globally small 

fluctuations in the mean while taking into account locally large excursions. The toy signal displayed in 

Fig. 1 was used to calibrate the algorithm parameters; the signal was generated with similar frequency 
content and variations to the observed in the experimental tests. Sampling frequency was 1024 Hz and 

total duration was 40 seconds, the first 20 seconds the signal is composed of 2 sinusoidals of 22 Hz 

and 24.5 Hz, after 20 seconds the frequencies are shifted to 21Hz and 24 Hz. For discernibility 

reasons, Fig. 1 shows only the portion of the signal between times 19 and 21 seconds, notice that no 

discontinuity is evident to the eye at 20 seconds. Fig. 2 shows the IMFS extracted via EMD using 

stopping parameters [θ1 θ1 α] = [0.05 0.5 0.05]x10^-4 (Rilling et al. 2003). When the instant 

frequencies for each IMF are calculated via HT the resulting values exhibit an oscillatory behavior 

around the target frequencies (Fig. 3). To deal with this problem we proceed to smooth the calculated 

IFs by averaging over a time window of 2 seconds, the result is displayed in Fig. 4. It is seen that the 
variations of the frequency content over time are successfully identified. 
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Figure 1. Simulated signals on the time (left) and frequency (right) domains. 
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Figure 2. Extracted modal responses via empirical mode decomposition for the signal without noise 
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Figure 3. Instant frequency for each modal component via HT  
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Figure 4. Instant frequency smoothed (averaged) using a 2 seconds window  

 

 

3. WAVELET TRANSFORM 

 

The Continuous Wavelet Transform (CWT) of a signal x(t) is defined as the convolution of the signal 
and scaled, shifted versions of the mother wavelet ψ(t): 
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The wavelet coefficients W(a,b) contain information about the function x(t) at the scale a (which can 
be related with frequency) and around the time position b. A modified version of Complex Morlet 

Wavelet (Grossman and Morlet 1990, Yan and Miyamoto 2006) is used in the applications presented 

in this article: 
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where fb is a bandwidth parameter that controls the shape of the mother wavelet and fc is the central 

frequency of the mother wavelet. Using the Heisenberg uncertainty principle it can be shown that the 

time and frequency resolutions for this wavelet at a frequency fi are given by: 
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The wavelet coefficients W(a,b) resulting from applying the CWT  along with the modified Complex 

Morlet wavelet to the toy signal are shown in its absolute values in the Wavelet Maps displayed in Fig. 

5. The wavelet analysis is performed at the low (Fig. 5 bottom) and high frequency (Fig. 5 top) ranges. 

The low frequency analysis was performed using parameters fb=10 and fc=24, the critical resolution 

values are then ∆t=1.807 s (fi=21 Hz) and ∆f=0.0514 Hz (fi=24.5 Hz). The high frequency analysis 

was performed using parameters fb=1 and fc=1, the critical resolution values are then ∆t= 0.0238 s 
(fi=21 Hz) and ∆f= 3.8993 Hz (fi=24.5 Hz). For the high frequency analysis the time axis was limited 

to the range 19-21 seconds so that the discontinuity is observable. It can be seen that through the 

analysis at both frequency ranges not only the change in the frequencies of vibration can be examined 
but also the exact time instant where the change took place. 
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Figure 5. High (top) and low (bottom) frequency wavelet analysis 

 

 

4. EXPERIMENTAL TESTS 
 

A simply supported single-span bridge model (Fig. 6) was used to evaluate the behavior of the signal-

processing based identification methodologies using experimental vibrational data. The bridge was 

excited with different vertical noise vibrations using an electro-dynamic shaker located near the bridge 

mid-span. The frequency band of the induced noise vibrations was controlled to examine the effect of 

the excitation frequency content on the efficiency of the SP methodologies. Five different excitations 
were imposed ranging from frequency contents between [0-30] Hz to [0-100] Hz (Fig. 7). In order to 

induce a discontinuity and a frequency shift in the response of the bridge, mass was added or removed 

during each test through a 44.5lb bucket connected to the laboratory crane. The induced load and 
bridge vibrations were monitored through 7 piezoelectric accelerometers distributed along the bridge. 

Fig. 8 shows the recorded accelerations at mid-span of the bridge for all the cases analyzed. It is seen 

that while identification of the discontinuity produced by the change in mass is obvious in the “added 

mass” cases, for the “removed mass” cases such identification is not evident. 
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Figure 6. Single span bridge model 
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Figure 7. Measured excitation loads in the time (left) and frequency (right) domains. 
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Figure 8. Recorded accelerations at mid-span of the bridge for each of the excitations in Fig. 7. Left: removed 

mass cases, right: added mass cases. 

 

Based on conventional Fourier analyses of the response of the bridge (with and without added mass) to 

white noise excitation, the two first natural frequencies of vibration were identified (Fig. 9). For the 

bridge without added mass, these frequencies were 21.2 Hz and 24 Hz. When the mass is added, these 

frequencies change to 21.8 Hz and 24.5 Hz. That is, the induced change in frequency is below 3%. 

The challenge to the time-frequency signal processing analyses is to identify these changes and the 

time at which they occur. 
 

When the HHT was applied to the raw recorded accelerations, the IMFs extracted exhibited serious 

mode mixing and identification of the instant frequencies was not possible. An ensemble of EMD 



results from different noise added signals (EEMD, Wu and Huang 2009) was also explored obtaining 
no significant improvements. The results obtained are not presented here due to space constrains. 

Improved results were obtained when the signal was filtered previous to the application of the HHT. A 

10
th
 order Butterworth filter was used to remove frequency contents above 26 Hz and below 19 Hz 

(Fig. 10). The extracted IMFs for the 30 Hz removed mass case are displayed in Fig. 11. Instant 

frequencies results are displayed in Fig. 12 for the 30 Hz and 100 Hz removed mass cases; the 

displayed frequencies (dotted lines) were averaged over a 2 seconds window.  It is seen that although 

the two modes were separated, the resolution at which the frequencies of vibration are estimated does 

not allow a robust identification of the changes occurring in the system. Similar results were obtained 

for all the other cases. 
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Figure 9. Frequency content of the bridge response with and without added weight. Figure on the right is a 

smoothed version of the Fourier spectra on the left figure. 
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Figure 10. The signal and its Fourier spectrum before and after being filtered. 
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Figure 11. Extracted IMFs via EMD for the 30 Hz removed mass case 
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Figure 12. Instant frequencies via HT of the extracted IMFs (dotted lines) and target frequencies (continuous 

lines). Top: 30 Hz removed mass case, bottom: 100 Hz removed mass case 

 
The results obtained for the CWT analyses at the low and high frequency ranges are displayed for 

selected cases in Figs. 13 to 16. In these figures the bottom plots present the results of the low 

frequency analyses, the dotted lines represent the identified horizontal ridges (instant frequencies) and 
the continuous lines indicate the target values. The ridges can be extracted by a variety of techniques 

(e.g. Carmona et al 1997); in this work we used the algorithm developed by Jianfeng Lu (Daubuchies 

et al. 2011). This is a dynamic algorithm that maximizes a functional of the energy of the curve being 

extracted that penalizes variation. There is a user-defined parameter (λ>0) that determines the 

“smoothness” of the resulting curve estimate, we used λ=10^7 for all the examples in this work. The 

top plots present the results for the high frequency analysis [80-512 Hz]. The red dots identify the time 

at which the maximum wavelet coefficient is reached for each of the frequencies analyzed, this can be 

think of a “vertical ridge.” 

 
From Figs. 13 to 16 it is seen that better results are obtained when the excitation load has limited high 

frequency content. This is evident when comparing the results obtained for the removed mass cases 

with white noises excitations with frequency content limited at 30 Hz and 100 Hz (Figs. 13 and 14, 
respectively). While the difference in the accuracy in which the instant frequencies were estimated 

may not be significant, the identification of the discontinuity (frequency shift instant) from the high 

frequency analysis is more stable in the 30Hz case. For the added mass case (Figs. 15 and 16) the 
quality of the high frequency results is similar for both cases (30 Hz and 100 Hz); however, notice that 

for the added mass case the discontinuity was evident even from a quick inspection of the acceleration 

response (Fig. 8). 
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Figure 13. High (top) and low (bottom) frequency wavelet analysis for the 30 Hz removed mass case. 
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Figure 14. High (top) and low (bottom) frequency wavelet analysis for the 100 Hz removed mass case. 
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Figure 15. High (top) and low (bottom) frequency wavelet analysis for the 30 Hz added mass case. 

 

time [s]

fr
e
q
. 
[H
z
]

0 5 10 15 20 25 30 35 40

100

200

300

400

500

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. High (top) and low (bottom) frequency wavelet analysis for the 100 Hz added mass case. 

 

 

5. CONCLUSIONS 

 

HHT and CWT based identification approaches exhibited satisfactory results when evaluated based on 

a simplified artificially generated signal. Nevertheless, when evaluated under more realistic conditions 

using vibrational data from a simply supported single-span steel bridge laboratory model, the CWT 
approach offered better results. The HHT approach was able to separate the first two modal responses 

in all the cases evaluated, however it required the signal to be pre-filtered, and still the precision at 
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which the frequencies where estimated did not allow a robust identification of the changes undergone 
by the system. On the other hand, through the implementation of low and high frequency analyses via 

CWT, it was possible to identify the frequencies shifts in the system and the time instant at which they 

occurred.  
 

The results obtained support what has been identified in the past based on numerical simulations 

(Velazquez and Montejo 2011, Montejo 2011), damage detection methodologies based on the direct 

examination of the structural response via Wavelet Transforms can be limited by the frequency 

content of the excitation. Better results are obtained when the high frequency content of the excitation 

is limited.  However, as the high frequency content of the excitation increases, the results obtained 
after a high frequency analysis may include not only spikes due to structural damage but also 

anomalies proper of the excitation. 
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