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SUMMARY:  
This paper presents a methodology for the optimal seismic performance-based design of frames using hysteretic 
dampers as a means for passive control. The design methodology is of the analysis/redesign type. It attains the 
stiffness of the individual braces and their strength. This procedure resulted in a fully stressed design, i.e. a 
device was added only where the performance equaled the allowable value. In this paper, a formal gradient-
based solution to the same optimization problem is offered. The connection between optimal solution obtained 
by this methodology and the solution obtained using the simple analysis/redesign algorithm is then studied and 
discussed. 
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1. INTRODUCTION 
 
Seismic design of structures is a very intriguing and important issue in the field of structural 
engineering. Severe earthquakes are not a very common event and are random in nature, making them 
hard to predict and design for. However, once they occur, life threatening situations and major 
structural destruction are likely to happen. Structural performance is highly related to damage states 
within the structure. Some response measures often associated with damage are drifts and energy 
dissipation, and structural performance can be efficiently achieved by controlling these parameters.  
 
One way of controlling responses and enhancing seismic performance within an existing structure is 
by adding external control systems. Clearly, the design of structures with added control systems 
should be cost-effective as well as practical and intuitive for the use of practicing engineers. Passive 
friction dampers that dissipate energy through Coulomb friction forces created between two solids 
during slippage are considered in this section. The hysteretic model of friction dampers is a stick-slip 
one, with the slip displacement being smaller than the yielding displacement of the brace, to ensure the 
device slips. The hysteretic curves of these dampers are usually rectangular, show large dissipation 
abilities, and exhibit nearly no fade over a large number of cycles (Symans et al., 2008; Soong and 
Dargush, 1997). They are also relatively simple to model (and are therefore more familiar to the 
practicing engineer) and are commonly used worldwide. A similar hysteretic behaviour can be attained 
by using metallic yielding devices. In this case, the energy is dissipated through yielding of metal 
components. Therefore, the optimization problem presented herein as well as its solution can generally 
be used with any type of hysteretic damping device.  
 
Since hysteretic devices have been extensively studied over the last few decades, several 
methodologies for the allocation of such dampers exist. Among the non-optimal design methodologies 
are methodologies which predetermine the damping distribution. These include the methodologies 
presented by Cherry and Filiatrault (1993), Inoue and Kuwahara (1998), Levy et al. (2001, 2005), 
Choi and Kim (2006), Lee et al. (2008), Benavent-Climent (2011). Other methodologies, such as 
Lopez Garcia (2001),  Liu et al. (2005), Xu and Teng (2002), Yang et al. (2002), Moreschi and Singh 



(2003), Wongprasert and Symans (2004), Dargush and Sant (2005), Ok et al. (2008), Apostolakis and 
Dargush (2010), Farhat et al. (2009) Lavan and Dargush (2009) and Daniel et al. (2010), are optimal, 
or close to optimal. Although these methods are considered optimal, a great portion of the end result 
depends on the performance measure and objective function chosen. Often, these optimal solutions are 
very computationally expensive or are otherwise not very practical to apply. This paper presents a 
design methodology that is both cost-efficient, being optimal or near-optimal and practical to apply. 
Moreover, it may be regarded as optimal since a comparison of its designs to those attained by a 
formal optimization shows close matchup. 
 
2. PROBLEM FORMULATION 
  
2.1. Equations of motion 
 
The differential equations of motion for a yielding MDOF structure with added hysteretic damping 
devices undergoing seismic loading are formulated as:  
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where M  and C are the mass and inherent damping matrices of the bare structure in inter-story drift 
DOFs, αK represents the stiffness matrix (in drift DOFs) of the structure after yielding,  tag is the 

ground motion's acceleration function, e is the excitation direction matrix with values of zero and one, 
 tx ,  tx  and  tx  are the relative inter-story acceleration, velocity and displacement vectors between 

the DOFs and the ground,     tt xxfh ,  and     tt xxfh ,0  are the hysteretic force vector of the yielding 

structure and dampers, accordingly, in local drift coordinates with zero secondary slope. 0k  represents 

the vector of added brace stiffness. This representation assumes a bi-linear representation (e.g. 
Sivaselvan and Reinhorn, 2000) of the hysteretic behavior of the yielding structure and damper, with 
the friction damper having a zero-stiffness after slipping occurs. An example for a differential form of 
the hysteretic force relationship is Ozdemir's rate-independent model (Ozdemir, 1976). 
 
2.2. Performance measures 
 
Structural performance, in this case, is evaluated on the basis of damage. This is done using existing 
damage indices, or any other response found to portray structural damage due to seismic action. It 
seems that in the case of structures which stay within the elastic zone following a seismic incident, 
damage is strongly related to the maximal inter-story drift developed. Otherwise, it seems more 
appropriate to use an accumulated-natured performance measure, relating to both drifts and hysteretic 
energy. It should be emphasized that in the following optimization problem damage is limited on a 
local basis, i.e. in each story separately. Hence, the problem formulation, as well as the design 
procedure to be presented, are appropriate for both regular and irregular structures. Added friction 
dampers help reduce these performance measures, and the measure of cost and effectiveness of these 
devices is by the amount of added stiffness. The amount of added stiffness represents the cost of the 
retrofit, in addition to the fact that minimum added stiffness to the structure results in smaller added 
forces to the structure and smaller accelerations. In some cases, the installation of the device also has a 
fixed price which is independent of the stiffness of the device. As will be seen, the proposed 
methodology, indirectly, also reduces the number of added dampers, as those are allocated only where 
actually needed. 
 
2.3. Optimization problem 
 
The problem at hand is formulated as an optimization problem for which the objective function 
minimizes the total amount of added stiffness within the damping devices under constraints of 



maximal performance measures. The optimization problem is thus formulated as: 
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where 0k  and max,0k  are the vectors of added brace stiffness and maximal allowable added stiffness, 

and pin is a normalized inter-story performance index of interest.  
 
3. PROPOSED SOLUTION SCHEMES 
 
Two solution schemes are presented in this paper. The first is a solution scheme which is based on a 
simple analysis/redesign iterative process which leads to a “fully-stressed design” (FSD). This simple 
algorithm leads to solutions that are optimal as verified by a proposed second solution scheme, based 
on formal gradient-based optimization. 
  
3.1. Fully stressed design and analysis/redesign algorithm 
 
Designs that are based on fully stressed characteristics go back to the classical design of trusses under 
static loads, whereby the weight is minimized for a given allowable stress. For that problem it had 
been widely accepted that the optimal design yields a: statically determinate fully stressed design, with 
members out of the design (i.e. with zero weight) having strains smaller than the allowable. This result 
appeared in the literature as early as 1900 (Cilley, 1900). It was later shown (Levy, 1985) that this 
design is a Karush-Kuhn-Tucker point and therefore, an optimal design. Later on, it was shown that 
some dynamic optimal designs also possess "fully stressed" characteristics. Levy and Lavan (2006) 
considered the minimization of total added viscous damping to frame structures subjected to ground 
accelerations while constraining various inter-story responses. Their optimal solutions attained by 
formal optimization indicated that: "At the optimum, damping is assigned to stories for which the local 
performance index has reached the allowable value. Stories with no assigned damping attain a local 
performance index which is lower or equal to the allowable." That is, the optimal solutions attained 
"fully stressed design" characteristics. Based on past experience in similar problems and on the 
discussion in Lavan and Dargush (2009), where it was shown that the optimal buckling-restrained 
braces (BRB) allocation solution obtained using genetic algorithms (GA) is a FSD (or very close to 
that, since the problem was discrete), it is conjectured here that the optimal solution to the friction 
damper allocation and sizing problem in frame structures (the solution of Eqn. 2.2) possesses FSD 
characteristics, i.e.: At the optimum, friction dampers are assigned to locations for which the inter-
story performance index of interest has reached the allowable value under a given ensemble of ground 
motions. 
 
Solutions to optimization problems, which possess fully stressed characteristics, are efficiently 
achieved iteratively using a two-step algorithm in each iteration cycle. Such an analysis/redesign 
procedure will be utilized here to attain fully stressed designs where the stiffnesses and locations of the 
damping devices within frame structures are to be determined. The general recurrence formula used in 
this case is: 
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where ik ,0  is the value of the design variable associated with location i, pii is the inter-story 

performance measure of interest at the location i, piallowable is the allowable value for the performance 
measure, n - the iteration number and P - a convergence parameter. 
 



3.2. Proposed analysis/redesign methodology  
 
The first design methodology, which is based on an analysis/redesign iterative procedure to retrieve 
the solution to the optimization problem presented in Eqn. 2.2, is summarized in Table 3.1. 
 
 
Table 3.1. Analysis/redesign optimization scheme flowchart  

  

Step 1: Perform time history analysis on the bare frame for all ground motion within the 
ensemble, evaluate the peripheral inter-story performance measures and check violation 
of the allowable performance measure. If the performance measure exceeds the 
allowable at any location, add friction dampers at the peripheral locations with a 
predetermined slip displacement and an arbitrary initial stiffness. 

Step 2: Perform time history analysis of the braced frame for all ground motions within the 
ensemble and re-evaluate the peripheral inter-story performance measures. 

Step 3: Using Eqn. 3.1, redesign each brace's stiffness according to the performance measure at 
that specific peripheral location. 

Step 4: Repeat steps 4 and 5 until convergence of all brace stiffnesses is reached. 
  

 
3.3. Formal optimization scheme 
 
The second design methodology uses gradient-based formal optimization tools to obtain the solution 
to the optimization problem presented in Eqn. 2.2. The actual optimization process was carried out 
using the MATLAB optimization toolbox, while supplying analytical expressions for the gradients of 
the objective function and constraints. There is a possibility, in these optimization algorithms to use 
gradients which are based on finite-differences. However, these require much computation effort 
which may be avoided when the gradients are provided.  
 
3.3.1. Optimization algorithms 
 
Not many optimization methods which are able to solve nonlinear constrained optimization problems 
(i.e., those whose objective function or constraints are nonlinearly dependent on the design parameter) 
exist. In the MATLAB Optimization Toolbox, two such gradient-based algorithms are available for 
use with the fmincon function. Those are the "Active Set" and "Interior Point" methods. Both these 
algorithms generally transform the original problem into a subproblem which is easier to solve, and 
use the solution to this subproblem to advance the solution towards the optimal solution.  
 
3.3.2. Gradient computation 
 
The gradients of the objective function and the constraints of the optimization problem introduced in 
Eqn. 2.2 are needed in order to formally solve the problem using gradient-based methods. The gradient 
of the objective function is computed in a straight-forward way and is 1k  J

0
. As for the gradient 

of the constraints, these first have to be defined and formulated before their gradient can be derived. In 
the case of a yielding structure, taking into account the contribution of both maximal drifts and 
hysteretic energy dissipated (at the end of vibration) by yielding of the structure seems to agree with 
the approach to damage quantification. Thus, in this case the constraints ensure that at each location 
the drift is smaller than the allowable and the dissipated energy is smaller than the allowable. Here, 
average responses of an ensemble of ground motion are used (e.g. ASCE/SEI 41-06, 2007). In order to 
reduce computational efforts when evaluating the gradient, all performance measures can be combined 
into a single constraint. In the case where average values are used, the single constraint, pi, represents 
the maximum between the maximal (of all locations) average (of all ground motions) normalized 
hysteretic energy and the maximal (of all locations) average (of all ground motions) normalized drift, 
and shall be smaller than one. This constraint can be written as: 
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where Eh(tf) is a vector of the normalized hysteretic energy at the end of vibration obtained for a 
specific ground motion, dm is the vector of normalized maximal inter-story drifts obtained for a 
specific ground motion and neq is the number of ground motions considered. Or, equivalently, using a 
weighted sum (Lavan, 2006): 
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where q is a large number, and the maximal inter-story drift is obtained using a p-norm (Lavan, 2006) 

such that:             1d1xddd 
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number. The gradient of this constraint was analytically derived and is: 
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fh0λ  is a vector of Lagrange multipliers obtained by solving the following set of differential equations: 
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4. EXAMPLE 
 
A 10 story yielding steel frame excited by the SE 10 in 50 ground-motion ensemble is retrofitted using 
friction dampers. 2% inherent Rayleigh damping is assumed for the first and second modes. The story 
stiffnesses of the shear frame are (108.566, 106.592, 102.644, 96.722, 88.826)×103kN/m for the first 
five stories and 78.957×103kN/m for each of the remaining stories. A 2% secondary stiffness slope 
ratio for all stories was taken. The mass of each floor is 54 tons. The friction dampers are to be 
installed on braces added to each of the stories. As the frame is set to yield, the performance measure 
of choice in this example was taken as the maximum between the maximal normalized energy and 
inter-story drift (see Eqn. 3.3). The design variables are the stiffness of each of the added braces on 
which the sliding friction device is installed. For the braces, the steel's yield stress was taken as 225 
MPa, while the modulus of elasticity was taken as 210,000 MPa. The relative slip displacement of 
each device was set to the maximum between half the allowable drift of the story where the device is 
located and 90% of its yield displacement (to ensure that the device slips before it yields). The slip 
displacement of half the allowable drift was determined by finding the slip displacement which 
maximizes the amount of energy dissipated by the friction device over one hysteretic cycle, given that 
in this cycle the drift reaches its maximal (allowable) limit. This was found by differentiating the 
energy with respect to the slip displacement and equating to zero. In this case, the slip displacement, 

0yx ,  was determined to be 0.0048m. A reduction factor of R=4.0 was taken to compute the structure's 

yield force at each story, i.e., first the maximum elastic force obtained at each story for each ground 
motion considered was computed, after which the average of all ground motions was divided by R to 
obtain the yield force. The yield displacement of the structure was then computed based on the yield 
force and the elastic stiffness matrix of the structure. The allowable drift was taken as 60% of the 
maximal (of all stories) average drift of the bare frame. The allowable hysteretic energy was taken as 3 
times the plastic energy dissipated by the bare frame in one yielding cycle. In Eqn. 3.3 p and q were 
taken as 10,000. 
 
4.1. Analysis/Redesign solution 
 
Step 1: Time-history analysis was carried out numerically for each ground motion within the chosen 
ensemble. The average normalized inter-story drifts of the bare frame, along with the allowable value, 
the average normalized hysteric energy along with the allowable and the performance indexes can be 
seen in Fig. 4.1 (in white). As can be seen, the performance index exceeds the allowable value, and 
thus a friction damper is added at each of the peripheral locations, with initial arbitrary values (in this 
case a stiffness of 10,000 kN/m was added in each of the floors).  
Step 2: With this initially damped frame, time history analysis was once again carried out and the 
inter-story drifts at all peripheral locations can be seen in Fig. 4.1 (in gray). 
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Figure 4.1. Normalized average and allowable values (dashed): (a) inter-story drifts (b) 
hysteretic energy and (c) performance index of the bare (white) and initially-damped (gray) 

structure under the SE 10 in 50 ground motion ensemble. 
 



Step 3: As can be seen from Fig. 4.1, the initial damping distribution still leads to a performance 
measure which exceeds the allowable, and thus the brace stiffness is re-evaluated iteratively, using the 
analysis/redesign algorithm. Using this analysis/redesign procedure, at each iteration, the brace of each 
damper is re-evaluated using the following recurrence relation: 
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where  n
ik ,0  is the added brace stiffness at location i at the nth iteration,    

j

n
i

t
tdriftmax  is the 

maximum absolute drift (in time) at location i obtained from earthquake j within the ensemble at the 
nth iteration, allowabledrift  is the maximal allowable drift, neq is the number of ground motions 

considered and P being the convergence constant. 
Step 4: Upon convergence, the brace stiffness distribution, shown in Fig. 4.2, was obtained. The final 
solution attained was k0=(4.376, 2.928, 1.888, 1.194, 0.653, 0.101)×104kN/m for the first six stories 
and 0.000 kN/m for each of the remaining stories. It is appropriate to mention here that the possible 
increase in forces due to the added stiffness of the braces is to be accommodated by the columns and 
foundations. Thus, there is a need to check whether these forces have been increased. In the case of 
this example, the final distribution of added dampers increased the average base shear by about 0.4%. 
With this final damping distribution, time history analysis was once again carried out for all ground 
motions within the chosen ensemble, and the average normalized inter-story drift, hysteretic energy 
and performance index obtained at each location can be seen in Fig. 4.2 (in gray), along with the 
values of these drifts in the bare-structure (in white) and the allowable value. As can be seen from Fig. 
4.2, dampers were added only to locations for which the inter-story drifts equal the allowable, making 
the obtained solution a fully-stressed design. Fig. 4.3 presents the convergence of the design variables 
(brace stiffnesses) and the performance measure. As can be seen in Fig. 4.3, convergence is practically 
reached within less than 30 iterations. This was obtained for a convergence power value of P=1 for all 
iterations. The power P was found by trial and error. 
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Figure 4.2. Normalized average and allowable values (dashed): (a) inter-story drifts (b) hysteretic energy (c) 

performance index of the bare (white) and finally-damped (gray) structure under the SE 10 in 50 ground 
motion ensemble and (d) final added stiffness of braces. 
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Figure 4.3. Convergence of sum of stiffness at all frames and maximal performance index. 

 



4.2. Formal Optimization 
 
The optimization problem was solved using the MATLAB Optimization Toolbox. The fmincon 
function was used to solve the nonlinear constrained optimization problem using the gradient- based 
optimization algorithm "Interior Point". The gradients of the constraint and objective function, derived 
in section 3.3.2, were provided for the fmincon function to use. The initial brace stiffness was taken as: 
3.798×105kN/m for all stories. It shall be noted that this initial distribution was selected based on a 
trial and error process, since not for all initial guesses the problem had converged. The normalized 
inter-story drifts, hysteretic energy and performance index obtained with this damping system in place 
can be seen in Fig. 4.4. 
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Figure 4.4. Normalized average and allowable values (dashed): (a) inter-story drifts (b) 
hysteretic energy and (c) performance index of the bare (white) and initially-damped (gray) 

structure under the SE 10 in 50 ground motion ensemble. 
 
Using the Interior Point algorithm, the stiffness converged to the final stiffness using 962 
function/gradient evaluations. The final solution attained was k0=(4.350, 2.906, 1.868, 1.179, 0.640, 
0.0915)×104kN/m for the first six stories and 0.000 kN/m for each of the remaining stories (see Fig. 
4.5). The inter-story drifts, hysteretic energy and performance indices obtained with the converged 
damping system in place can also be seen in Fig. 4.5. The convergence of the constraint as well as the 
performance index can be seen in Figs. 4.6. 
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Figure 4.5. Normalized average and allowable values (dashed): (a) inter-story drifts (b) hysteretic energy (c) 

performance index of the bare (white) and finally-damped (gray) structure under the SE 10 in 50 ground 
motion ensemble and (d) final added stiffness of braces. 

 
When comparing the solutions attained using the analysis/redesign scheme and formal optimization, it 
can be seen that these two are very similar. The solution obtained by the formal optimization has a 
very slight advantage over that obtained by the analysis/redesign scheme, as the cost value of its 
objective function (sum of stiffnesses) is 5101035.1  compared to 5101141.1   for the 



analysis/redesign solution (0.95% difference, which is likely the result of different convergence 
criteria). Therefore, it was shown that the analysis/redesign procedure, in this case, results in an 
optimal solution of the optimization problem. When comparing the number of function evaluations 
needed for the solution to converge (the cost of computational effort, it this case), it can be seen that 
the analysis/redesign method is much more efficient since it only needed about 40 function evaluations 
to converge, while the optimization process only converged after a few hundred evaluations. 
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Figure 4.6. (a) Performance index (constraint) convergence and (b) Stiffness (objective function) convergence. 
 
5. CONCLUSIONS 
 
A performance-based methodology for optimally allocating friction/hysteretic damping devices within 
existing frame structures was presented. The methodology, which considers all possible dampening 
locations, is based on an analysis/redesign scheme, which is simple to use and does not demand many 
iterations to converge, making it very efficient. The methodology is general, due to its special 
formulation, making it applicable to any type of structure, regardless of the extent of its irregularity.  
 
It was shown that by using friction dampers, responses can be reduced to a desired level and that the 
solution attained is a fully-stressed design. To validate the optimality of the solution obtained by the 
analysis/redesign procedure, the optimization problem was also solved using formal optimization 
tools. This required the evaluation of the gradients, which were derived for both the objective function 
and the constraints, using the calculus of variations. For the case presented, it was shown that the 
optimal solution attained using the formal optimization is very close to the solution targeted by the 
analysis/redesign procedure, which may, therefore, be regarded as an optimal solution. This reinforces 
previous results which were referenced and discussed herein. Moreover, it was shown that the 
analysis/redesign method is a much faster converging process, which requires much less 
computational effort. This is the case since even if the number of needed iterations is similar, the 
analysis/redesign method only requires analyses computations, while the formal optimization requires, 
in addition, Lagrange multipliers and gradient computations. Therefore, the analysis/redesign method 
is much more practical for use. 
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