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SUMMARY:  
If uniformity isotopic medium is assumed between rupture fault and the ground layer, and full space radiation of 
the dislocation source is regarded as the ground layer seismic incident wave, the ground motion would be simul- 
ated which is considered the rupture process by seismic response of soil using finite element method. The calcu- 
lation model area can be reduced by this method, and also calculation efficiency is improved. By comparing the 
analytic solutions based on the dislocation theory with results of the FEM, this method is proved the calculation 
accuracy.  
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INTRODUCTION 
 

Recently, studies of wave propagation and strong-ground-motion simulation considering source 
process, wave-path and site effects have been given increasing attention (e.g., Miyatake, 1980; Frankel 
and Vidale, 1992; Frankel, 1993; Graves, 1993; Yomogida and Etgen, 1993; Olsen et al., 1995; Olsen 
and Archuleta, 1996; Ohminato and Chouet, 1997; Pitarka et al., 1998; Wald and Graves, 1998).  

 
With respect to the simulation of source rupture process, equivalent load method based on moment 

tensor of dislocation source is widely applied, in which the dislocation is equivalent to double-couple 
loads which are then applied to the corresponding finite element nodes, and many efficient finite-diffe- 
rence algorithms are developed. When using this equivalent double-couple method, the rupture 
sources are generally embedded within the computation model, one of whose advantages is the ability 
to consider the reflection influence of crust layering structures under the source, but the computation 
region and amount are quite large. A long-period seismic motions simulation method was presented by 
Liu et al.(2008), who combines explicit finite-element method with parallel calculation technique. Ne- 
glecting the effect of crust structures of fault region on wave propagation, the fault region can be simp- 
lified to homogeneous medium, then full space radiation of the dislocation source is regarded as the 
incident wave and applied to the computational region. Compared with the former methods, the calcu- 
lation region become quite small, and calculation amount can be reduced accordingly. In this article, 
the accuracy of the method proposed by Liu et al.(2008) is validated through comparisons between 
finite-element numerical solutions based on this method and analytical solutions of point source and 
dislocation source in full space based on the dislocation theory. 
 
 
1. FULL SPACE RADIATION FIELD OF GENERAL SHEAR DISLOCATION SOURCES 
 

In an isotropic, homogenous and elastic full space medium, neglecting the discontinuities of body- 
force and stress, the elastic displacement field caused by discontinuities across an internal surface ∑ of 
the fault can be expressed as follows: 
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where [ ( , )]iu t is the source dislocation function, jl represents normal on fault, ijklc is the consti- 

tutive relationship of fault medium, [ ( , )]kl i j ijklm u t l c is the seismic moment-density tensor . 

Any displacement field caused by the dislocation on finite fault surface can be equivalent to contri- 

bution superposition of infinite point dislocation (the dislocation on the tiny area ( )d  ), to a finite 

fault, the solution for shear point dislocation source can be expressed by the following equation: 
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where N
nu is the near-field coupling term, ,IP IS

n nu u are the intermediate-field P and S wave terms, 

,FP FS
n nu u  are the far-field P and S wave terms, respectively. Near-field coupling term N

nu gains 

contributions from both P-wave potential gradient and S-wave potential rotation, and is composed of 
two motions of P-wave and S-wave. The physical meanings of parameters in the formulas can be 

found in Aki and Richards (1980), where 
2 



  represents the P-wave velocity, and 




  is the S-wave velocity. 

 
Now there're several source time functions widely used, such as the Haskell function, the Bell 

function, and the exponent function, etc. Since long period motions are not sensitive to the specific 
dislocation process (Anderson and Richard, 1975), so the Bell function is used as the dislocation 
function in this article. To a finite fault, let ( )r   be the distance from point 1 2( , )   on the fault to 

the initial rupture point, and rv  be the rupture velocity, then the dislocation at 1 2( , )   can be 

expressed as follows: 
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where T is the rise time, 1 2( , , )pu t  denotes the dislocation for 1 2( , )  in p direction (p=1,3), 

pD denotes the final dislocation in p direction. 

 
 
2. FINITE-ELEMENT CALCULATION METHOD 
 

Finite-element numerical simulation method is used in this paper. The nodes of computational re- 
gion can be divided into internal nodes and artificial boundary nodes, nodes at the artificial boundary 
are regarded as artificial boundary nodes, and the other nodes are all internal nodes, note that nodes at 
the free surface belong to the internal nodes. Based on explicit finite-element calculation, motion equ- 
ations of all internal nodes can be expressed as follows: 
 

  Mu Cu Ku P                                                        (2.1) 
 

Here, M,C,K represent the matrixes of mass, damping, and stiffness, respectively, and P is the 
external force vector. For the calculation model in this article, P =0. By using the central-difference 
method, u  can be approximately expressed in terms of the displacement components uas 
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Using the explicit integration scheme combining central-difference with average approximation 

(Anderson and Richards, 1975), the recursion formulas of nodes displacements and velocities are 
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For artificial boundary nodes, the multi-transmitting boundary formulas (MTF, Liao ZP, 2002) are 

used 
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in which N denotes the order to be taken in MTF, 0 means boundary nodes, j represents internal 
nodes adjacent to 0. 
 

It should be noted that in Eqn. 2.3, u is the displacements of full-wave field, while u in Eqn. 2.5 
represents the displacements of scattered-wave field. To the bottom boundary of calculation model, 



scattered-wave field displacements = full-wave field displacements – incident-wave field displacemen- 
ts; to the lateral boundary, since the calculation model used completely overlies the rupture surface, so 
there is no incident wave field, and scattered-wave field displacements = full-wave field displacements. 
Incident wave field displacements are acquired through analytical solutions of dislocation source in 
homogeneous isotropic elastic full space. 
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Figure 2.1. Finite-element computational model, OABC-EFGH represents the calculation region 
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Figure 2.2. Source time function 
 
 
3. COMPARISONS OF FINITE ELEMENT SOLUTIONS WITH ANALYTICAL SOLU- 
TIONS FOR SHEAR DISLOCATION SOURCE 

 
a) Comparisons of shear dislocation point source 
 

The sizes of finite-element computation model (shown in Fig. 2.1) are: OB=OC=4.8km, OE= 
0.75km, the calculation region is single elastic medium with shear wave velocity 3 /sv km s , 

compression wave velocity 3 3 /pv km s , density 32000 /kg m  , Poisson ratio 0.25  . 

The cube is adopted as finite element grid with space step 15X Y Z m      , and calculation 
time step 0.002t s  . 

 



In order to obtain basic solution of point source ground motion, the Bell function is used as source 
time function in this paper, and the pulse width is 0.2 s (shown in Fig. 2.2). The source parameters are: 

fault strike 90  , dip angle 90  , point dislocation rupture 0.2m, size of the point source 
50m×50m, rupture point coordinate (2.415km, 2.43km, 4km). 

 
Due to the disparities between P-wave and S-wave propagating velocities radiated from a point 

source, the reflected P-wave from the free surface will firstly be superposed with the incident S-wave 
inside the calculation region. For the convenience of studying wave propagation, the influence of 

near-field coupling term N
nu  is neglected in this paper, using P ( IP FP

P n nU u u  ) and S 

( IS FS
S n nU u u  ) wave as the incident wave to finish the calculation separately, comparisons are made 

accordingly with P and S wave analytical solutions for homogeneous elastic full space. Three nodes' 
results are output with respective coordinates of No.1 (1.8km, 1.8km, 0.45km), No.2 (2.1km, 2.1km, 
0.45km), No.3 (2.4km, 2.4km, 0.45km). The comparison results are shown as Fig. 3.1 and Fig. 3.2 
respectively. 
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Figure 3.1. Comparison of X-component analytical and finite-element solutions 
for incident P-wave case of point source model 
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Figure 3.2. Comparison of X-component analytical and finite-element solutions 
for incident S-wave case of point source model 



The solid line in Fig. 3.1 is P wave in homogeneous elastic full space, which can be viewed as 
analytical solutions for nodes to be output in the calculation model and can be obtained by Eqn. (1.4) 
and Eqn. (1.6). The solid line in Fig. 3.2 is S wave in homogeneous elastic full space, which can also 
be viewed as analytical solutions for nodes to be output in the calculation model and can be obtained 
by Eqn. (1.5) and Eqn. (1.7). The dashed lines in Fig. 3.1 and Fig. 3.2 denote corresponding 
finite-element numerical solutions. To both P and S wave, before the arrival of reflected wave, the 
finite-element solution can be regarded as the result of incident wave propagating in full space. It can 
be seen from Fig. 3.1 and Fig. 3.2 that the finite-element solutions are consistent with the analytical 
solutions before the arrival of reflected wave, demonstrating that the finite element method used in this 
article is right, and the accuracy is quite high. 
 
b) Comparisons of dislocation line source 
 

Let fault strike 90   , dip angle 90   , dislocation equal to 0.2m (X direction), rise time 

equal to 0.2s, shear wave velocity 3 /sv km s , compression wave velocity 3 3 /pv km s , 

density 32000 /kg m  , Poisson ratio 0.25  . Coordinate of the southern end point near the free 
surface is (2.415km, 2.43km, 4.0km), and the initial rupture point  (2.415km, 2.43km, 4.1km). The 
fault size is taken as 100m×200m with sub-fault size 100L W m    , thus the fault surface is 
divided into two sub-faults. Rupture velocity of the fault is 2.7 /rv km s . The finite-element 

calculation model is the same as the former point source case. Comparison results are shown in Fig. 
3.3 and Fig. 3.4. 
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Figure 3.3. Comparison of Y-component analytical and finite-element solutions 
for incident P-wave case of line source model 
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Figure 3.4. Comparison of Y-component analytical and finite-element solutions 
for incident S-wave case of line source model 

 
It can be seen from Fig. 3.1-3.4 of comparisons between finite-element numerical solutions and 

corresponding analytical solutions that, before the arrival of reflected wave, the finite-element solution 
is consistent with the analytical solution. 
 
 
4. CONCLUSIONS 
 

Long-period ground motion finite-element simulation method (Liu et al., 2008) is used in this 
article, which assumes the crust structure between rupture fault and the ground layer is homogeneous 
medium. With waves radiated from dislocation source in full space as incident wave to the overburden 
layer bottom and use of finite element method to simulate the seismic response of overburden layer, 
the ground motion numerical simulation results can be gained which have considered the rupture 
process. Then the simulation results are compared with analytical solutions for homogeneous elastic 
full space based on dislocation theory, from the comparison results, it is shown that for internal nodes 
of the computational region, before the arrival of reflected wave, results of the two methods are 
completely same, demonstrating that the accuracy of the proposed finite element method can be 
guaranteed, and the method presented by Liu et al. (2008) is feasible. This method is suitable for the 
condition of uniform lower crust structure. Actually, since the exploration information of deep crust 
structure is not detailed enough in general, the above assumption is acceptable. Based on this premise, 
the proposed method has two primary strengths. First, for deep fault condition, it can significantly 
reduce the calculation model and then improve the efficiency, the requirements for computer hardware 
can be reduced as well. Second, the seismic motion simulation considering rupture process can be 
simplified as conventional seismic response numerical analysis for 3-dimentional site, the main 
difference is that incident wave used in site seismic response analysis is uniform excitation, but when 
considering the rupture process, input wave changes to the seismic motion field, which implies that the 
input waves for the boundary nodes of numerical calculation model are different. 
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