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SUMMARY:  
In order to assess the accuracy of computational models of buildings, the results can be compared to forced 
vibration testing (FVT).  The authors are currently assessing results from computational models and full-scale 
FVT as part of a NSF NEESR project.  This paper focuses on a five-story reinforced concrete shear wall 
university library structure constructed in the 1970’s.  Characteristics of this structure that make it unique include 
a large atrium at the center of the building and irregularly placed reinforced concrete shear walls.  Comparison of 
the results from the detailed computational models and the FVT experiments showed that the detailed 
computational models closely estimated the building frequencies while varying more widely in the mode shape 
prediction.  Variables that led to the differences in the computational and the experimental results include the 
current concrete strength and stiffness, the estimation of the library mass including the books, and modeling of 
the flexible diaphragm. 
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1. INTRODUCTION 
 
Modal parameters such as natural frequencies, mode shapes, and modal damping ratios are key 
information in determining the dynamic performance of a building.  Typically computational models 
are created to estimate these parameters.  One way to gain reasonable assurance that these 
computational models are accurate is to compare the models to forced vibration testing (FVT) results 
(McDaniel and Archer 2009, 2010).  The authors are currently assessing results from computational 
models and full-scale forced vibration tests as part of a NSF NEESR project.  This paper critically 
compares the natural frequencies and mode shapes obtained experimentally with those obtained 
through computational modeling of the Robert E. Kennedy Library located on the campus of 
California Polytechnic State University, San Luis Obispo (Fig. 2.1a). The structure is a five-story 
reinforced concrete shear wall building constructed in 1977. One of the unique characteristics of this 
building is the large atrium located near the center of the floor plan that runs the entire height of the 
building, taking up roughly 10-16% of the entire floor area. Additional complexity is added by the 
irregular arrangement of shear walls, shown in Fig. 2.2a, as well as the unique wall cross sections and 
discontinuous configurations in a few cases. 
 
 
2. ANALYTICAL MODELLING 
 
Modeling of the Kennedy Library progressed from a simple hand analysis to a detailed computational 
model.  This progressive modeling started with simplifying assumptions so that the predictions could 
be calculated by hand.  The first model assumed a lumped mass at the center of a rigid diaphragm with 
three degrees of freedom per floor. This model is illustrated in Fig. 2.3. To estimate the weight of the 
books, a sample area of bookshelves was weighed resulting in a value of 80 psf. The weight used for 
table and desk locations was taken as 25% of the design live load of 100 psf.  The mass matrix was 



 
(a)                                                                              (b)   

Figure 2.1. (a) Robert E. Kennedy Library; (b) plan view of the Kennedy Library 
 

 
 

(a)                                                                              (b)   
Figure 2.2. (a) 2nd floor plan of building; (b) typical arrangement of furniture and books 

 
derived using three degrees-of-freedom at the center of mass of each floor.  The shear walls were 
modeled as line elements forced into double bending by a rigid slab. Originally shear stiffness, 
torsional stiffness, and out-of-plane wall stiffness were omitted. The resulting first mode frequency of 
20.1 Hz was far from the experimentally determined frequency of 3.3 Hz. However, this artificially 
large stiffness was quickly attributed to shear which provided as much as 90% of the wall flexibility in 
some cases.  The next hand calculation included shear stiffness and left everything else constant. The 
result of the analysis was a first mode frequency of 5.45 Hz (down from 20.1 Hz) verifying that shear 
accounts for a significant amount of the flexibility in this structure. 
 

 
 

Figure 2.3. Lumped mass model 



A computational model was used to adjust the model further.  After calibrating the computational 
model with the previous hand analysis (f=5.45hz), the model was modified to include torsional 
stiffness and out-of-plane wall stiffness.  The first mode frequency increased negligibly to 5.46 Hz. 
 
The next step was to remove the rotational constraints at the floor levels and allow the walls to interact 
freely with the slab.  The floor slabs are a waffle slab/pan joist system. Rather than modeling every 
joist of the slab, an equivalent thickness was used for the slab. Removing the double bending 
assumption yielded a fundamental frequency of 2.56 Hz resulting in a model that was too flexible.  
One issue was the interaction of the wall elements with the slab elements. The interaction of the wall 
and slab occurs along the length of the wall. Without adding additional constraints to this model, the 
deformed shape is incompatible as shown in Fig. 2.3.  Deformation compatibility was enforced by 
adding an additional line element, rigid in flexure in the plane of the wall (i.e. Ry is infinite). It was 
assigned to connect the centerline of the wall/line element to the slab elements along the length of the 
wall.  Adding these constraints to the model raised the fundamental frequency to 2.87 Hz (up from 
2.56 Hz). 
 

 

 
 

Figure 2.3. Compatibility error at wall/slab connection; rigid constraints at wall/slab connection 
 
The next issue to consider was properly modeling the C, T, L and box shaped walls. The current 
model treated all wall assemblages as separate, disconnected line elements. Constructing the wall 
assemblages in this manner led to high underestimation of the flexural and torsional stiffness of the 
walls.  A new model was developed with properties for moments of inertia, shear areas, and torsional 
constants for the entire wall assemblages.  Four node elements could have been used to model the 
walls as well, however, these elements have been shown to be inadequate for modeling torsion 
(Wilson 2002), a dominant response of the library due to the irregular shear wall arrangement. To 
confirm the inadequacy, a 12'-0" tall, 9” thick, 22'-6" long wall was analyzed with a 10,000 kip-in 
torque applied at its centroid. The wall was analyzed both as a line element and with finely meshed 4 
node elements. A mesh density of 32 x 60 elements was used because this density provided 
convergence to a final solution. Table 2.1 illustrates the inadequate torsional stiffness provided by the 
plane stress elements. 
 



Table2.1. Comparison between line and wall wlement used for torsion 
 Line Element Model Shell Element Model % Difference 
Rotation about axis of the wall 0.00199 rad 0.00110 rad 81.5% 

 
With the walls properly modeled, the next step was to remove the rigid diaphragm constraints across 
the floors, thereby modeling the stiffness of the diaphragm. This was necessary due to the diaphragm 
flexibility created by the large atrium.  However, with the rigid diaphragm constraints removed, 
attention had to be paid to the points where the walls attached to the diaphragm. Previously this was 
not an issue because the degrees-of-freedom across the diaphragm were locked to each other. To 
properly model the connection of the walls to the diaphragm, individual rigid diaphragm constraints 
were placed to ensure that the translational degrees-of-freedom of the slab along the cross section of 
the wall were locked to the degrees-of-freedom of the point where the line element (geometric 
centroid of the wall) met the diaphragm, see Fig 2.4. 
 

 
 

Figure 2.4 Rigid diaphragm constraints at wall/slab intersection 
 
Another consequence of not modeling the diaphragm as rigid is that the mass for each floor could no 
longer be assigned as point masses at the center of mass. Thus the mass had to be modeled as area 
masses assigned to each 4 node element. However, modeling the mass as area mass can cause errors in 
the torsional modes if the mesh of the diaphragm isn’t fine enough. Therefore, the relationship 
between mesh density and the effect on the torsional mode was studied in a series of analyses.  Table 
2.2 illustrates the results of the analyses.  The same mesh density that was used in the test structure to 
get to within 1% of the theoretical period for the torsional mode (about 2' by 2' square elements) was 
used in the current model.  The full building model is shown in Fig. 2.5.  The single bay, single story 
model had a story height of 12', a bay size of 13.5' x 13.5', a story weight of 1000 kips, 6" square steel 
columns fixed at the base (shear and torsion of columns neglected), with a rigid diaphragm restrained 
from rotation about the global x and y axes to enforce the double bending assumption. 
 
Table 2.2. Mesh density vs. torsional mode period 

 
Mesh 
Density 

Mode 3 Period % Diff. Mesh 
Density 

Mode 3 Period % Diff. 
Computational Theory  

10.5 
Computational Theory 0.99 

Area/9 0.91 0.82 Area/100 0.83 0.82 



 

 
 

Figure 2.5. Computational model (CSI 2005) 
 
Table 2.3 shows that the difference between the experimental natural frequencies and those obtained 
from the computational model are less than 20%. 
 
Table 2.3 Computational model vs. experimental results 

 Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) 
Computational Model 
Frequency 

3.97 4.45 5.83 

Experimental 
Frequency 

3.30 3.65 4.56 

% Difference 16.8 % 17.9 % 18.4% 
 
Concrete cracking in the shear walls has the effect of reducing the initial stiffness of each wall. In 
order to account for cracked concrete, an effective stiffness of cg EI7.0

 was used for each wall (ACI, 

2008); where gI  is the gross moment of inertia of the wall and cE  is Young’s modulus for concrete 

( 3605=cE  ksi ). A comparison between the natural frequencies determined experimentally and those 
of the line wall element model with a reduced effective stiffness are presented in Table 2.4. 
 
Table 2.4. Cracked concrete computational model vs. experimental results 

 Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) 
Computational Model 
Frequency 

3.54 4.05 5.16 

Experimental 
Frequency 

3.30 3.65 4.56 

% Difference 6.7% 9.8% 11.6% 
 
These results show a close correlation between the experimental and analytical results. Given the 
estimation of the effective live load and the library books, a 10% difference in natural frequencies is 
reasonable. In order to understand what a 10% difference in natural frequencies amounts to, two 
additional analyses were run. The first one included an additional 3" of 150 pcf concrete across each 
floor. Three inches of normal weight concrete amounts to about 14% of the estimated floor weight. 



The results are shown in Table 2.5. The second analysis reduced the stiffness of the walls to 60% of 
the gross stiffness. Since using 70% of the gross stiffness of the shear walls is a rough approximation 
in ACI 318, a further  reduction was explored here to study the sensitivity of the results to this value. 
The results are presented in Table 2.6. 
 
Table 2.5. Experimental results vs. cracked concrete computational model (additional 3" concrete) 

 Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) 
Model Frequency 3.17 3.64 4.64 
Experimental 
Frequency 

3.30 3.65 4.56 

% Difference 4.3 % 0.3 % 1.8% 
 
Table 2.6. Experimental results vs. cracked concrete computational model (60% gross stiffness) 

 Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) 
Model Frequency 3.39 3.91 5.01 
Experimental 
Frequency 

3.30 3.65 4.56 

% Difference 2.8 % 6.9 % 9.9 % 
 
The results in these tables suggest that the mass of the building was likely underestimated since adding 
mass rather than reducing stiffness resulted in better correlation between the experimental natural 
frequencies and those from the computational model. A summary of all the models and their resulting 
natural frequencies is presented in Table 2.7. 
 
Table 2.7. Summary of computational models 

Model Assumptions Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) 
Walls modeled as disconnected   rectangular 
line elements in double bending 
Neglect shear and torsional stiffness 
Neglect out-of-plane stiffness 
Rigid diaphragm assumption 

20.08 33.00 51.28 

Include wall shear stiffness 5.45 6.57 7.97 
Include torsional and out-of-plane wall 
stiffness 

5.46 6.57 7.97 

Remove double bending constraint 2.56 3.64 4.92 
Rigid constraints to enforce plane sections 
remaining plane at wall/slab intersection 

2.87 3.90 5.11 

Model C,T and L shape wall assemblage 
Semi-rigid diaphragm 

3.97 4.45 5.83 

Account for concrete cracking (0.7 Ig) 3.54 4.05 5.16 
14% increase in mass 3.17 3.64 4.64 
Experimental Data 3.30 3.65 4.56 

 
 
3. COMPARISON OF ANALYTICAL TO EXPERIMENTAL MODE SHAPES 
 
In addition to the natural frequencies, the experimental and computational mode shapes were 
compared to further assess the accuracy of the computational models.  The experimental mode shapes 
for the first two frequencies are shown in Table 3.1.  In spite of the large opening created by the 
atrium, the diaphragm behaved in a rigid manner for the first two modes.  Preliminary investigation 
into the higher modes showed a flexible response of the diaphragm. 
 
 
 
 
 
 



Table 3.1. Experimental mode shapes (EMS) 
EMS # Frequency (Hz) EMS 
 
 
1 

 
 
3.3 

 
 
 
2 

 
 
3.65 

 
 
The test for orthogonality of two modes is called the modal assurance criterion (MAC) (Allemang, 
2003). In this experiment a mass-weighted modal assurance criterion was used (McDaniel and Archer 
2010). The MAC compares two modal vectors and results in a number between 0 and 1. Two 
orthogonal modes have a MAC number of 0 and two identical modes have a MAC number of 1. The 
mass-weighted MAC formula is provided in Equation 1. 
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Where iφ and jφ  represent the two mode shapes being compared, and 

M  is the mass matrix of the structure. 
 
Table 3.2 below shows the mass weighted MAC numbers that compare the experimental mode shapes 
to the mode shapes from the computational model. 
 
Table 3.2 MAC numbers comparing the computational model and experimental mode shapes 

 Mode 1 Mode 2 
 
Experimental mode shapes 
 

 
0.726 

 
0.866 

 
Although reasonably accurate, the MAC numbers could be improved by refining the computational 
model, particularly in regards to the modeling of the effective live load and the library book mass, 
concrete wall effective stiffness and the flexibility of the semi-rigid diaphragm. 
 
 
4. CONCLUSIONS 
 
Typically computational models are created to estimate key information in determining the dynamic 
response of a building such as natural frequencies, mode shapes, and modal damping ratios.  One way 
to gain reasonable assurance that these computational models are accurate is to compare the models to 
forced vibration testing (FVT) results.  The structure focused on for this research was the Kennedy 
Library, a 5-story reinforced concrete shear wall building on the California Polytechnic State 
University, San Luis Obispo campus.  Characteristics of the library that make it unique and 
challenging to model include a large atrium at the center of the building and irregularly placed 
reinforced concrete shear walls.  Increasingly complex computational models of the library building 
were created to determine the most influential modeling variables.   



Models of the library that could be easily analyzed by hand were first explored.  This consisted of 
modeling the building with three degrees-of-freedom per floor. This first model neglected shear 
deformation, out-of-plane stiffness, and torsional stiffness of the walls while treating all the walls as 
disconnected rectangular sections.  The slab was treated as rigid and the mass was assigned as point 
masses at the center of mass. This analysis resulted in a fundamental frequency of 20.08 Hz, far larger 
than the experimental fundamental frequency of 3.30 Hz. The next hand analysis included the concrete 
wall shear stiffness, resulting in a fundamental frequency of 5.45 Hz. Such a dramatic difference 
shows the significance of accounting for shear stiffness of the walls.  Removing the rotational 
constraints at the ends of each wall (removing the double bending assumption) dropped the 
fundamental frequency from 5.46 Hz to 2.56 Hz. As far as influencing the dynamic response, 
removing the double bending assumption was 2nd only to including the shear stiffness of the walls due 
to the cantilever behavior of the shear walls.   
 
Next, improving the modeling of the C, T, L and box shaped walls was addressed.  Treating the wall 
assemblages as separate, disconnected line elements led to high underestimation of the flexural and 
torsional stiffness of the walls.  A new model was developed with properties for moments of inertia, 
shear areas, and torsional constants for the entire wall assemblages.  To model the flexibility of the 
diaphragm, the diaphragm could no longer be modeled as rigid.  Individual rigid diaphragm 
constraints were then necessary so that the translational degrees-of-freedom of the slab along the cross 
section of the wall were locked with the point where the line element (geometric centroid of the wall) 
met the diaphragm. These revisions shifted the fundamental frequency from 2.87 Hz to 3.97 Hz.  In 
order to account for the effective concrete stiffness due to cracking, seventy percent of the gross 
stiffness for bending was used in the next model, resulting in a fundamental frequency of 3.54 Hz.   
This brought the computational model to within 7% of the experimental frequency, a close estimate 
considering the multiple variables influencing the dynamic response of the building. 
 
The computational model mode shapes were also compared with the experimental mode shapes; mass 
weighted MAC numbers of 0.726 and 0.866 were calculated for the first and second modes, 
respectively. Although reasonably accurate, the MAC numbers could be improved by refining the 
computational models.  Both mass and stiffness were varied to determine where refinement of the 
computational model should be focused.  Increasing the mass of the building was found to be more 
effective than decreasing the building stiffness.  Variables that could have led to the differences in the 
computational and the experimental results include the current concrete stiffness, the estimation of the 
library mass including the books and the effective live load, and modeling of the flexible diaphragm 
including the atrium.   
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