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SUMMARY:  
Seismic response of RC structures primarily depends on the behavior of its members and structural interfaces. 
The nonlinear response of RC element is mainly due to concrete cracking, reinforcement plasticity and also their 
interaction. Stress transfer mechanism across cracks can be qualitatively classified as normal and shear stress. 
Reinforcement and concrete bond is put in the former while aggregate interlock and dowel action in the latter. 
The main objective of this paper is the simulation of RC cracks by developing the proper constitutive model for 
dowel action. This paper aims at developing a simplified model for crossing dowel bar based on the beam on 
elastic/inelastic foundation theory. Also a microphysics-based model developed by Li et al. is implemented and 
used to simulate the behavior of RC cracks and interfaces. Finally the constitutive verification of the model is 
carried out by comparing computational predictions with available experimental results. 
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1. INTRODUCTION 
 
Proper constitutive models can be an efficient tool to analyze RC structures under earthquake loading. 
Structural interfaces may be present in pre-formed joints, which are common in precast concrete, 
construction joints in cast-in-place concrete and stress-induced interfaces or cracks, which commonly 
occur in beam–column connections, brackets and corbels, etc. These interfaces may turn out to be 
critical planes in the operation of the load-resisting mechanism and govern the ultimate strength, 
ductility and energy absorption capability of an entire structure (Soltani and Maekawa, 2008). 
Joints and interfaces are basic components of many RC structures. The behavior of RC cracks and 
interfaces is complex due to different types of stress transfer mechanism such as aggregate interlock 
and dowel action. Earthquake excitations will form localized damages at connections (e.g. beam-
column) and increase crack opening during load reversals. Aggregate interlock deteriorates fast with 
crack widening. This makes dowel action as the main resisting mechanism at RC connections. On the 
other hand the dowel action is the only resisting mechanism at pre-formed joints, contraction 
connections and precast structures. 
 
This paper aims at developing a constitutive model to simulate dowel action mechanism of deformed 
bar across RC cracks and interfaces. The model is based on the beam on the elastic foundation (BEF) 
and will be extended to the beam on inelastic foundation (BIF) by proposing an elasto-plastic 
formulation for subgrade stiffness. Contact density model proposed by Li et al. (Maekawa et al., 2003) 
is implemented to simulate aggregate interlock mechanism. The models are combined to compute the 
capacity of RC cracks under different types of loadings. 
 

2. DOWEL ACTION 
 



During the past years, extensive experimental and analytical investigations have been carried out to 
investigate the shear transfer behavior of dowel bars across cracks. Most investigators reported Beam 
on Elastic Foundation analogy (BEF) as a suitable tool to simulate the behavior of crossing bars. The 
first studies on the dowel action of the reinforcement were conducted on contraction joints in concrete 
highway pavement. The results from the contraction joint investigations, however, cannot be directly 
applied to other structural problems where significant nonlinear response as induced by concrete 
cracking and material nonlinearities, is observed (ASCE, 1982). Maekawa and Qureshi (Maekawa and 
Qureshi, 1996a) proposed a micro scale model for prediction of reinforcing bar behavior under the 
generic condition of axial pullout and transverse displacement. The formulation established by 
considering the combined axial pullout and transverse dowel action. Maekawa and Qureshi (Maekawa 
and Qureshi, 1996b) showed that coupling of pullout and transverse shear of steel at a crack cannot be 
ignored in structural analysis. Then, Maekawa and Qureshi (Maekawa and Qureshi, 1997) presented a 
unified model to simulate the behavior of interface transfer mechanism. Soltani and Maekawa (Soltani 
and Maekawa, 2008) extended the model proposed by Maekawa and Qureshi (Maekawa and Qureshi, 
1996b) to path-dependent cyclic loading case. The model determines the deformational behavior of 
deformed bars by solving the nonlinear equilibrium and compatibility equations numerically with 
respect to the loading path and history. Since, they considered the crossing bar as a three-dimensional 
member capable of developing coupled shears and moment in addition to axial force, the model is 
time consuming. 
 
In this paper, the BEF is extended to the BIF by proposing an elasto-plastic formulation for subgrade 
springs. The stiffness deformation relation ( δ−sk ) for springs is suggested based on studies 
conducted by Soltani and Maekawa (Soltani and Maekawa, 2008) and Maekawa and Qureshi 
(Maekawa and Qureshi, 1996b). 
 

2.1. Monotonic loading 
 
In spite of its shortcomings, the BEF analogy has been recognized as the most suitable approach to 
simulate concrete and reinforcement interaction, so called dowel action, across cracks and different 
types of connections in RC structures. Beam on elastic foundation is made of infinite similar elastic 
springs which connect a beam to an elastic subgrade. Dowel action mechanism is simulated by 
considering the crossing bar as a beam and the surrounding concrete as elastic foundation which is 
represented by springs. Each spring force is considered to be proportional to the corresponding 
deflection at the spring location (Fig. 2.1.1). Dowel shear carried by embedded bar can be determined 
from springs stiffness ( sk ). The crossing bar at crack subjected to shear deformation can be treated as 
a semi-infinite beam resting on the elastic foundation. Hetenyi (Hetenyi, 1946) derived the required 
formulation by assuming elastic behavior for beam and foundation. 
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where )(),(),(),( xVxMxxy θ are deflection, rotation, moment and shear profiles of beam respectively. 

bI is the moment of inertia of the bar and sE is the elastic modulus of steel. Dowel shear is the amount 
of shear at the location of applied load ( 0=x ), so: 
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The above equation shows that the dowel shear directly depends on the applied shear displacement 
(δ ) and material properties that is described by spring stiffness (surrounding concrete) and reinforcing 
bar. In fact, it can be used for all types of loading paths by adopting a proper formulation for spring 
stiffness. It is clear that at the early stages of loading, surrounding concrete response is elastic and 
Eqn. 2.1.7. has a fair accuracy. Increasing bar shear deformation leads to local crushing of the concrete 
under the embedded bar and separation of the subgrade can be occurred. Gradual changes in springs 
stiffness can be a convenient method to simulate the damages and fractures at the vicinity of shear 
plane. 
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Figure 2.1.1. Dowel action simulation by using the BEF model, a) semi-infinite beam on elastic foundation, b) 
Equalizing with the BEF 

 
In this paper in order to determine the behavior of springs and to propose a reasonable formulation for 
the stiffness of springs, dowel shear in Eqn. 2.1.7. is equalized with the model developed by Soltani 
and Maekawa (Soltani and Maekawa, 2008). To consider the effect of the localized curvature in the 
bar, close to the shear plane, the concept of a Curvature Influencing Zone, cL , is introduced by 
Maekawa and Qureshi (Maekawa and Qureshi, 1996b). They experimentally evaluated the induced 
curvature of crossing bars under applied shear deformation. The shape of curvature profile, 

)(xφ within the zone (Fig. 2.1.1.) is considered as: 
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Since dowel shear is defined as the amount of shear at the shear plane ( 0=x ), we focus on the first 
portion of the zone. 
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When the applied shear deformation is too small, the bar and surrounding concrete remain elastic so 

cL can be computed from the BEF analogy. The gradual cracks and damages in concrete due to 
increasing bar shear displacements (δ ) are modeled by considering an increase in cL as a function of 
initial value of 0cL by defining a non-dimensional damage index ( DI ) as follows: 
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where bd and cf are bar diameter and concrete compressive strength, respectively. The reinforcing 
bar strain field can be determined. Also bending moment and shear distribution along the embedded 
reinforcing bar can be expressed: 
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where y is the local coordinate of bar cross section. Therefore, the shear force carried by crossing bar 
is directly calculated as: 
 

33

4 ...
11

384...
11
6)0(

c

bs

c

sb
d L

IE
L
EdxVV δδπ ==== (2.1.19) 

 
Eqn. 2.1.19. expresses dowel shear by assuming elastic response. By equalizing the simplified dowel 
action equation that is obtained from Soltani and Maekawa (Soltani and Maekawa, 2008) with Eqn. 
2.1.4., the stiffness-deformation relation ( δ−sk ) of springs is obtained. 
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It can be rewritten as: 
 

4
.

181)(
c

bs
s L

IEk =δ (2.1.23) 

 
by replacing Eqn. 2.1.13. and Eqn. 2.1.14. into Eqn. 2.1.23., the final form of the elasto-plastic 
formulation of spring stiffness is calculated. 
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Eqn. 2.1.24. shows that the foundation stiffness directly depends on the concrete compressive strength 
and the bar diameter indirectly. Elastic limit is defined by damage index parameter. The subgrade 
stiffness ( sk ) is the most relevant parameter to capture the global behavior of embedded dowel bars 
hence by adopting the proper formulation, the final loading stage as well as the initial stage can be 
described. Local crushing and high inelasticity of surrounding concrete near the interface are 
simulated by gradual changes in the subgrade stiffness (Eqn. 2.1.24.) due to increasing bar shear 
displacements. 
 

2.2. Cyclic loading 
 
Dowel action mechanism has a considerable nonlinear response under reversed cyclic loading path. 
The source of nonlinearity should be sought in the plasticity of dowel bars and fracturing of the 
surrounding concrete. The amount of applied shear displacements as well as the direction of loading 
and also the number of loading cycles can lead to nonlinear response. To extend the formulation to 
unloading and reloading cases, we decompose the total displacement into two components, the elastic 
( eδ ) and the residual plastic ( pδ ) displacements. Experimental observations show that unloading 
diagrams have relatively smooth form and can be expressed by a polynomial function with respect to 
the loading history (Soroushian et al., 1988 and Vintzeleou and Tassios, 1987). It seems that it is 
possible to predict the unloading curve by a parabolic function. In fact, shear-deformation formulation 
( δ−dV ) can be derived just by two points (e.g. point A and B) for unloading curve. 
 
According to Fig. 2.2.1., the load-deflection equation for unloading diagram can be expressed as: 
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where maxdV is the maximum dowel shear. Fig. 2.2.2. (b) shows the reliability of Eqn. 2.2.1. with 
respect to the available experimental data and the experimental program results for unloading stage 
( maxδδδ <≤p ). The experimental values are normalized to compare in a consistent manner with the 



suggested equation. The embedded bar shear at each cycle is normalized by the maximum dowel shear 
and the elastic part is divided by the maximum shear slip.  
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Figure 2.2.1. Schematic load-deflection dowel shear under reversed cyclic loading path 
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Experimental results show that the residual plastic displacement, pδ changes due to increasing 
deformation of bar and cannot be assumed a constant value for it. Also it seems that determining the 
plastic bar displacement can improve the stiffness of unloading and reloading diagrams. So, the results 
of the available experimental results has been categorized for cyclic and repeating loading in order to 
obtain a reasonable relation between the maximum applied shear displacement, maxδ , and pδ . The 
plastic displacement of dowel bar ( pδ ) in each loading step is suggested by statistical analysis of the 



available experimental data and the experimental program results (Fig. 2.2.3.). The coefficient of 
correlation indicates the reliability of the proposed equations. The proposed equations (Fig. 2.2.3.) 
show that the plastic displacements under reversed cyclic and repeating loading depend on the 
maximum applied displacement and also cover the large applied shear displacements ( mm2max >δ ). 
The proposed formulation (Fig. 2.2.3.) will be adopted to extend the model to unloading and reloading 
cases. 
 

3. MECHANISM OF SHEAR TRANSFER ACROSS RC CRACKS 
 
Basically two main mechanisms of shear transfer across cracks are aggregate interlock (or shear 
friction) and dowel action due to the curvature of crossing bars at the RC interfaces. As the shear 
displacement path applies at the crack plane, overriding aggregates tend to widen the crack width 
(dilatancy). This crack opening increases the axial stress of bar while shear displacement causes 
flexure effect in bar. So, the overall stress state in reinforcing bar and surrounding concrete governs 
the crack opening and slip which can control the stress transfer across crack plane. It should be noted 
that the direct superposition of each formulation of aforementioned mechanisms (dowel action and 
aggregate interlock) cannot simulate the real behavior of RC interfaces. In Fig. 3.1. all mechanisms 
which affect the overall behavior of RC interfaces are shown. To determine the shear transfer across 
crack plane, the equilibrium of stresses at a crack can be written as: 
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where, ρ is the reinforcement ratio and N is externally applied force defined positive in compression. 
In fact by means of equilibrium (Eqn. 3.1.) it can be compute normal force due to aggregate interlock 
(σ ) and the axial bar stress ( sσ ).σ is computed by contact density model (Maekawa et al., 2003). sσ
is calculated based on the explicit formulation proposed by Soltani and Maekawa (Soltani and 
Maekawa, 2008). 
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Once the displacement paths ( ωδ , ) satisfy the equilibrium, the constitutive models for concrete shear 
(τ ) and steel ( sτ ) contribution determine corresponding mechanism and finally it can be computed 
the total shear transfer. 
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The flow chart for solving (Eqn. 3.2.) across RC interfaces is shown in Fig. 3.1. Starting from assumed 
crack opening and adopting an iterative-based approach it can be satisfied the equilibrium. The only 
parameter that should be sought is the crack opening because shear displacement is known as input. 
 

4. EXPERIMENTAL VERIFICATION 
 
In order to verify the constitutive laws and check its applicability, some reliable experimental results 
are needed. Here we will verify dowel action and RC interface behavior under monotonic and cyclic 
loading. 
 
4.1. Dowel action 
 
To verify the proposed dowel action model, the experimental and computed dowel shear provided by 
different bar diameters under pure shear are shown in Fig. 4.1.1. Dei Poli et al. (Dei Poli et al., 1992) 
extensively investigated the behavior of dowel action. The comparison of the analysis and the 
experimental results are shown in Fig. 4.1.1. for different bar diameters. Satisfactory correlation can 
be observed for different specimens. 
 
The experiment carried out by Vintzeleou and Tassios (Vintzeleou and Tassios, 1987) are used to 
examine the reliability of the proposed model and the current procedure under cyclic loading paths. 
The cyclic degradation of dowel shear stiffness is well simulated during load reversals. Good 
agreement between experimental and computed plastic residual is observed. 
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Figure 4.1.1. Comparison of test results and the model, a) comparison with test results reported in (Dei Poli et 
al., 1992) under monotonic loading, b) comparison with experimental results under reversed cyclic loading 

(Vintzeleou and Tassios, 1987) 
 

4.2. Verification of stress transfer model 
 
The accuracy and reliability of the proposed model (dowel action) and the developed algorithm 
(section 3) are examined through the corresponding experimental results to simulate the behavior of 
RC interfaces. Prediction for the behavior and the response of the RC cracks will be verified under 
monotonic and reversed cyclic loading path. For model validation, we use the results of experimental 
program which carried out by Maekawa and Qureshi (Maekawa and Qureshi, 1997) under monotonic 
loading path. They tested beam-type specimens and determined the contribution of each mechanism 



separately (Fig. 4.2.1.). In Fig. 4.2.1. td τττ ,, denoted for aggregate interlock shear, shear due to dowel 
action and the total shear transfer across crack respectively.  
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Kono et al. (Kono et al., 2001) experimentally investigated the shear transfer at construction joints for 
high-strength and normal weight concrete. The results of this research are used to verify the 
applicability of the model under reversed cyclic loading. The most important feature of the research is 
the finishing of the RC interface. The specimens are made up of two blocks which the lower block was 
cast first (Fig. 4.2.2. a). The shear interface has specific kind of finishing as shown in Fig. 4.2.2. (b). 
One of the key inputs of the aggregate interlock model is the contact density function ( )(θΩ ). Based 



on the experimental observations, Li et al. proposed )cos(5.0)( θθ =Ω for normal weight concrete. But 
for this type of interface (Fig. 4.2.2. b), )(θΩ should be determined. Since for this interface and 

orientation angles ( ooo 90,0,90 ,− ), )(θΩ has a discrete form (histogram) as shown in Fig. 4.2.2. (c). 
According to the interface type that is shown in Fig. 4.2.2. (b), the corresponding histogram is 
determined in Fig. 4.2.2. (c) and defined as an input for the model. 
 
It can be seen the results of analysis and the envelope curve for experimental result in Fig. 4.2.2. (d) 
under cyclic displacement path. Despite of the finishing form, the cyclic degradation and ultimate 
shear strength are well simulated by the model. 

 

5. CONCLUSION 
 
A macro scale constitutive model for dowel action mechanism was proposed to simulate the behavior 
of deformed bar across RC cracks. Explicit formulation of the BEF showed that dowel deformational 
profiles ( )(),(),(),( xVxMxxy θ ) can be simply determined. Also the model was developed to capture 
the reversed cyclic loading path. The cyclic deterioration was considered in a consistent manner.  
 
The proposed model for dowel action and contact density model proposed by Li et al. (Maekawa et al., 
2003) were implemented to simulate the response of different types of RC cracks and interfaces under 
monotonic and cyclic loading paths. The reliability and the accuracy of the model were examined by 
comparing with experimental observations under monotonic and cyclic loading. The results showed 
that the current model can simulate the response of RC connections (e.g. beam-column) during seismic 
excitations and can be a proper tool in assessing the capacity of RC members. 
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