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SUMMARY:  
The vibration based methods for structural health monitoring can be divided into modal and signal methods. 
Although modal methods have been widely used for damage detection and health monitoring, signal methods 
due to higher efficiency have been higher considered. In this study, a new algorithm to detect seismic damages in 
the bridge’s piers was proposed. According to the algorithm, before and after seismic damage, the bridge is 
excited by a cosine force, and the piers' responses are recorded. The dynamic properties of the response signals 
are extracted by Power Spectral Density function. Furthermore, the Cosh Spectral Distance is used to detect 
damage in the bridge’s piers. The results demonstrate which the proposed algorithm can identify the damage 
correctly. To evaluate the algorithm, an analytical model of a bridge with simple spans was used. The algorithm 
is an output-only method and measuring the excitation force is not needed. Moreover, there is no need to create a 
numerical model of the bridge. 
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1. GENERAL INSTRUCTIONS 
 
Old methods for detecting structural damage consist of observational and non-destructive Evaluation 
(NDE) methods. For example, in observational methods can point out to the methods that an expert 
checks the appearance of cracks in structures. The methods can explore local damages. However, the 
weakness of this method is that in the large dimension structures, all parts of them may not be 
available. In addition, it needs to check all the structures locally, which would be very time consuming 
[Ahmadi et al., 2012a]. Usually, bridges are built over natural barriers such as valleys and rivers or 
man-made barriers such as roads and railroads. Because these obstacles, bridge inspection is 
associated with dangerous or difficulties. Although small bridges can be inspected with a ladder, boat 
or other simple equipments, but large bridges or high-altitude bridges are not easily available. In other 
words, in civil engineering, non destructive methods and observational inspection are very common, 
but they are time-consuming and laborious [Balageas et al., 2006]. Considering the difficulties and 
shortcomings of the NDE methods, researchers have proposed another method [Sampaio, 1999, 
Ahmadi et al., 2012a]. This method is based on the structural response data in case the appropriate 
algorithms would be used, the structural health can be considered locally and totally. 
 
Generally, health monitoring and damage detection methods consist of two main processes that are 
called feature extraction and pattern recognition. Various methods for feature extraction and pattern 
recognition have been proposed by researchers. 
 
Measuring methods of structural response for health monitoring and damage detection are divided into 
static-based methods and dynamic (or vibration)-based methods [Yan et al., 2007]. Static-based 
methods are based on Strain or displacement measurements of structures under determined static 
loads. Furthermore, to determine changes in deflection, stiffness and load-carrying capacity of the 
structures, finite-element model updating is used. These methods have been widely used for the health 



monitoring of bridges. Static-based methods require a large amount of measured data. In addition, 
finite-element models of structures are needed. Moreover, static load tests must be done, which are 
disrupted the structure services [Qiao, 2009]. 
 
During the last two decades, many joints research regarding vibration based methods have been done, 
leading to the development of various algorithms and techniques [Doebling et al., 1996, Sohn et al., 
2003]. These methods can be divided into modal and signals methods. The modal methods use 
measured changes in modal parameters to detect damages. The methods have been applied well to 
determine the dynamical properties of structural systems [Mikami et al., 2011]. Changes in the modal 
shapes are a well-known technique in the modal methods. Although modal methods can generally be 
used for health monitoring and damage detection but signal methods in comparison with modal 
methods are more efficient and are used in various fields such as mechanical engineering, aerospace 
engineering and civil engineering [Qiao, 2009]. 
  
In signal-based methods, changes in the structural characteristics are directly obtained from the 
measured time histories. According to various signal processing techniques, signal-based methods are 
classified into three categories: time domain methods, frequency domain methods and time–frequency 
domain methods. In the time domain methods, using linear and nonlinear functions, features are 
extracted from the structural time history responses. Auto-Regressive model and Auto-Regressive 
Moving Average model are examples of time domain functions [De Lautour et al., 2009]. In the 
frequency domain methods, Fourier analysis is used to transfer the measured time histories from time 
domain to frequency domain. Fourier transform, Frequency Response Functions and Power Spectral 
Density are some of examples of the category.  In the time-frequency domain methods, to extract 
features and identify systems, time-frequency representations can be used. A large number of time-
frequency representations have been suggested by researchers. Short-Time Fourier Transform, 
Wavelet Transform, Wigner-Ville Distribution and Reduced Interference Distribution are some of the 
examples of the time-frequency representations [Hlawatsch et al., 1992, Neild et al., 2003]. 
 
 
2. POWER SPECTRAL DENSITY 
 
Power Spectral Density or power density spectrum represents the distribution of power relative to the 
frequency. The energy of the signals calculated as follows: [Mertin, 1999, Boashash, 2003] 
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where, )(tx  and Ex are signal and the energy of the signal, respectively. 
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distribution of the energy of the signal relative to the time.  According to Parseval’s theorem, the 
previous equation can be written as follows: [Mertin, 1999, Boashash, 2003] 
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where, )(ωX  is the Fourier transform of )(tx .  
2

)(ωX  indicates the distribution of the energy of the 

signal relative to the frequency. Therefore, 
2

)(ωX  is called the power density spectrum and is 

displayed as follows: [Mertin, 1999, Boashash, 2003] 
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power density spectrum can also be expressed as a Fourier transform of Autocorrelation function as 
below: [Mertin, 1999] 
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Autocorrelation function represents the similarity between the signal )(tx and its time-shifted variant 

)()( ττ += txtx  which can be defined as follows: [Mertin, 1999] 
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in which, d  indicates the distance between the signals. In addition, x  and xx ,τ are the norm of the 

signal )(tx and inner product of two signals, respectively. It is worth mentioning when the correlation 
between the signals increases, the distance between them decreases and vice versa. 
 
 
3. COSH SPECTRAL DISTANCE 
 
One of the well-known methods for pattern recognition and damage detection is matching method. 
Generally matching method is used for determining similarity between two Curves, shapes and, etc. 
with the same type. The matching method is widely used in speech identification and fingerprint 
recognition. With the match between the new patterns with stored patterns in the database, the 
matching method detects damages. Three known algorithms in the matching methods are a) 
Correlation algorithm, b) Least Square Distance algorithm and c) Cosh spectral distance algorithm. In 
the study, Cosh Spectral Distance (CSD) has been used for the research. CSD represents a sign about 
the global difference between two patterns. The algorithm is defined as follows: [Qiao, 2009] 
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where, n is the number of sampling points in the pattern, Si(k) and Sj(k) are the vector values of the 
patterns i and j at point k, respectively. CSDij is Cosh Spectral Distance between the patterns. The 
lower value of CSD algorithm reflects the similarity between the patterns is more. 
 
 
4. PROPOSED METHODOLOGY FOR DAMAGE DETECTION  
 
When a bridge is damaged, it cannot longer behave like it was designed from the beginning. On the 
other word after the damage occurs, usually structural stiffness is decreased and damping is increased. 
The bridge’s pier due to damage probably will experience some changes in the dynamic characteristics 
and modal parameters. Depending on the severity of the damage, changes in the dynamic 
characteristics of the bridges are different [Ahmadi et al., 2012b]. In a single degree of freedom 

system, with stiffness k and mass m, natural frequency is defined as m
k=ω  which stiffness 

reduces, also natural frequency decreases. Dynamic characteristics of a system can be extracted with 
spectral density function. 



The main hypothesis of this study is based on the fact that the damage at the pier of bridge will disturb 
the dynamic responses near its location. The differences between the dynamic responses of a bridge, 
before and after damage, often cannot be determined from the registered signals but if the signals are 
processed by Power Spectral Density function, probably the differences will be revealed. 
 
According to the algorithm, an accelerometer sensor is installed in the middle of each pier of the 
bridge. Then, an excitation force is applied to the bridge and its responses at the piers are registered. 
After damage occurrences, again the excitation force is applied and the bridge responses are 
registered. However, there is no need to record the excitation force (input loading). In addition, this 
algorithm, unlike many other methods, needs not to create an analytical model of the bridge. In this 
study, since there was no possibility of creating damage in the real bridge, the analytical model of the 
real bridge has been used. For this purpose, the bridge model has been excited by a low amplitude 
exciting force which is a cosine function of angular frequency equal to π (Figure 1). 
 

 

 
Figure 1. Cosine Exciting Force  

 
To calculate the bridge model responses under exciting force, the model has been analyzed based on 
the linear time history method, and its responses have been measured on the middle of the piers. 
 
Using Power Spectral Density function, the bridge model responses have been processed and dynamic 
characteristics have been extracted. Then using the CSD, damage has been detected and its location 
has been identified. 
 
 
5. CONFIRMATION OF PROPOSED METHODOLOGY 
 
To evaluate the proposed methodology, the analytical model of W180 bridge was selected as the 
structural sample. In the following subsections, firstly the bridge model is introduced. Then, according 
to the proposed methodology, bridge responses under exciting force are registered and their features 
are extracted by Power Spectral Density function. Moreover, for pattern recognition and damage 
detection, CSD method was used.   

 

5.1. Analytical Model of W180 Bridge 
 
Analytical model of W180 bridge has 4 spans and is made of concrete. This model is made by 
researchers at the University of California, Berkeley and University of Central Florida and published 
in 2008 by Pacific Earthquake Engineering Research Center (PEER) [Aviram et al., 2008]. A view 
from the bridge model and dimensions of the model are shown in Figure 2 and Figure 3, respectively. 
 



The stress-strain relation for concrete is defined by Mander model. Furthermore, piers and deck are 
modeled by frame element. The bridge model has 36 nodes and 45 frame elements. The model was 
analyzed with regard to the gravity loads. 
 

 
 

Figure 2. A general view of W180 bridge 
 

  
 

Figure 3. Dimension of the Analytical Model of W180 Bridge 
 
To validate the applicability of the proposed methodology, an assumed damage is considered. The 
damage is located in the bottom of pier No. 3. To apply it, the stiffness in the bottom of the pier No. 3 
was reduced by about 30%.  
 

5.2. System Identification 
 
As already mentioned, in this study a new algorithm is suggested to damage detection in the piers of 
bridges. Based on the algorithm, an excitation cosine force before and after happening the damage, 
were applied to the analytical model and its responses at the piers are registered. The responses were 
processed by Power Spectral Density function. The diagrams of Power Spectral Density related to the 
response signals of the pier No. 2 are shown in figures 4 and 5. 
 

 

 
Figure 4. The Power Spectral Density for Recorded Responses of the Undamaged Model 

 

5.3. Damage Detection 
 
Now using the calculated diagrams, the performance of the method can be evaluated. The calculation 
result is shown in figure 6. As shown in figure 6, under the effect of the exciting force, the probability 



of the existence of damage in pier No. 3 is equal to 100% while in piers No. 1 and 2 are less than 37%. 
Therefore, based on the results, damage is occurred in pier No. 3. 
 

 

 
Figure 5. The Power Spectral Density for Recorded Responses of the Damaged Model  

 

 

 
Figure 6. Damage diagnosis diagram based on the recorded responses in the middle of the piers using the 

proposed methodology. 

 
Accordingly, it is clear that the proposed algorithm has presented very good performance in damage 
detection and generally, in identification of damage location. 
 
 
6. CONCLUSION 
 
In this study, a new algorithm based on power spectral density function and CSD method, was 
proposed to detect damage in bridge piers. To evaluate the proposed algorithm, the analytical model of 
W180 bridge, was selected as the structural sample. As already mentioned, the proposed approach 
does not need the numerical model for system identification and damage detection. Moreover, the 
algorithm could detect damage in the concrete pier of W180 bridge precisely. In addition, the 
algorithm needs not to measure the input force. In fact, this algorithm can extract the dynamic 
properties of the bridge and detect any possible damage only based on the measured response of 



bridge structures. Therefore, considering the simplicity of the proposed algorithm, it can be used in 
health monitoring of bridges. 
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