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In this paper, 2D site response of small basin is numerically studied by subjecting the model to the 
single horizontal component and two simultaneous horizontal and vertical components. Furthermore, a 
parametric study on the basin edge slope is conducted subjecting the model to two conditions of input 
motion. The 2D site effects are investigated by calculating site amplification using spectral ratio of 
input motion to that of output motion at different points along surface of small basin. Furthermore, the 
discussion is made on differences based on single and double components of input. The cross coupling 
effects on the small scale site-response functions and the other characteristics are discussed. 
 
 
2. METHODOLOGY   
 
The 2D effects of small basin are investigated using FLAC computer program, which is based on 
finite difference method. The main advantage of this method is that it allows an accurate description of 
the infinite extension of the medium. The calculation is based on the explicit finite difference scheme 
to solve the full equations of motion, using lumped grid point masses derived from the real density of 
surrounding zones.  
 
The small basin is assumed to be filled by alluvium with different dynamic characteristics, which is 
subjected to one- and two- component of an earthquake. Then, the acceleration time histories are 
calculated at surface using FLAC 2D computer program. Then, the Fourier spectral ratio of the surface 
to the base motions is calculated. Before spectral ratio, the Fourier transform of acceleration time 
histories are smoothed. The spectral ratios are calculated among different horizontal and vertical 
components to consider the cross-coupling effects. In the following some explanations about 
modelling in FLAC computer program and its limitations are provided.  
 
 
3. DYNAMIC ANALYSIS CONSIDERATIONS 
 
There are three significant aspects in the performed analysis here that need to be explained: boundary 
conditions, damping, and wave transmission through the model, which are discussed in the following 
parts. 
 
3.1. Boundary Conditions 
 
Numerical methods, relying on the discretization of a finite region of space, require the appropriate 
conditions be enforced at the artificial numerical boundaries. In dynamic problems, fixed or elastic 
boundary conditions cause the reflection of outward propagating waves, back into the model and do 
not allow the necessary energy radiation. The use of a larger model can minimize the problem, 
because material damping will absorb most of the energy in the waves, reflected from distant 
boundaries. Whereas, this solution leads to a large computational burden, other alternative is to use 
quiet/free field (absorbing) boundaries, see Figure 1. The viscous boundary developed by Lysmer and 
Kuhlemeyer (1969) is used in FLAC software, which it is based on the use of independent dashpots in 
the normal and shear directions at the model boundaries.  
 
3.2. Wave Transmission  
 
Numerical distortion of the propagating wave can occur in a dynamic analysis as a function of the 
modelling conditions. Both the frequency content of the input wave and the wave speed characteristics 
of the system will affect the numerical accuracy of wave transmission. Kuhlemeyer and Lysmer 
(1973) show that for accurate representation of wave transmission through a model, the spatial 
element size, Δl, must be smaller than approximately one-tenth to one-eighth of the wave length, 
associated with the highest frequency component of the input wave. For this reason and because the 
lowest shear wave velocity in our assumed model is about 200 m/s, element dimension in the model 
are assumed to be less than 2.5 m. 
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