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implementation of this approach aims an improvement of the overall response of the structure. In 
some cases, the retrofit of a structure can lead to the implementation of both approaches in order 
to increase deformation capacity and modify the demands [fib Nº. 24 (2003)].  
 
The Part 3 of Eurocode 8 [CEN EN 1998-3 (2005)] recommends the following type of intervention: 
local or global or full replacement of damaged or undamaged elements, considering stiffness, strength 
and ductility modification of these elements; addition of new structural elements; modification of the 
structural system thought elimination of vulnerable joints or elements, in order to improve regularity 
or ductility; addition of a new structural system that sustain a part or all of the seismic action; possible 
transformation of existing non-structural elements in structural; introduction of passive protection 
devices through base isolation systems or dissipative bracings; mass reduction; restriction or change of 
use of the building; and/or partial demolition. 
 
 
2. REVIEW OF RELEVANT RESEARCH WORK  
 
The aim of the present research work was the improvement of the seismic structural behaviour of 
frame systems, through the enhancement of the hysteretic behaviour of an element or a component. In 
frame systems, the plastic hinge regions located, in general, in the extremities of the elements, are 
mostly responsible for dissipating energy [CEB BI Nº. 220 (1994)]. Therefore, the main goal is to 
improve the structure performance through the beam-column connection strengthening. Assuming a 
strong-column–weak-beam seismic design [EN 1998-1 (2004)], the experimental study of the beam-
column connection was limited to analysing the beam behaviour.  
 
Unless specific deficiencies are identified in the beam, usually, the improvement of the structure 
seismic behaviour is attained through modifications of the vertical elements (columns, shear walls and, 
eventually, including joints) [fib Nº. 24 (2003)]. For once, experience from past earthquake has shown 
a higher level of damage in the vertical elements. Besides, an inadequate behaviour concentrated in the 
vertical elements can induce a global failure mechanism, e.g., soft-storey. Furthermore, the 
strengthening of a beam is technically more difficult to attain than of a vertical element due to the 
presence of a monolithic connection with the slab. Thus, in this domain, scientific research efforts 
have been focused in the study of the hysteretic behaviour and on upgrading techniques of the vertical 
elements.  
 
The main deficiencies point out in the few research works related with beams are inadequate seismic 
design, lack of continuity of bottom bars over the supports and limited deformation capacity of the 
compression zone. However, in the first case, which corresponds to beams designed only for gravity 
loads, the top reinforced over the supports (including the slab bars within the effective flange width) 
and the typical closed stirrups within the critical zone of the beam provide enough resistance capacity. 
In fact, this additional capacity of the beams due to the participation of the full slab width, determines 
the formation of plastic hinge on the columns which may lead to undesirable failure mode, such as, 
soft-storey mechanisms. The lack of continuity of bottom bars, eventually, leads to an increase of the 
lateral deformations [Bracci et al. (1995); El-Attar et al. (1997); Calvi et al (2002)]. 
 
Therefore, taking into consideration the lack of research works related with the hysterical behaviour of 
the plastic hinges that should be formed in the RC beams, especially in the presence of significant 
gravity loads, and of the upgrading of their performance in order to optimize the behaviour of beam-
column connection, justifies the present experimental research. The reference specimen is a RC T-
beam which has been designed to exhibit normal ductility, as detailed in section 3.1. The methodology 
of quasi-static cyclic tests for structural elements is based on the imposition of a reverse cyclic 
displacement history where the failure is conventionally defined [ECCS (1985), ACI T1.1-01 (2001) 
and ATC Report Nº 24 (1992)]. In this study, an alternative procedure for RC cyclic tests was used 
[Gião et al. (2009)] which reproduces the demands on a critical zone more realistically and also 
considers the asymmetries of the section in terms of geometry and reinforcement. This alternative test 
procedure involves the imposition of a reverse cyclic displacement history, starting from the gravity 



 

load effects and leading to a non-symmetrical loading history where failure takes place when the 
connection is no longer able to sustain the gravity load, or when the drift exceeds specified limits. 
 
As mentioned, the aim of the presented experimental study was to correct or improve the hysteretic 
behaviour of the beam-column connection. In the search of improved seismic solutions, it should be 
mentioned the interesting approaches and concepts presented by some researchers. For instance, Pinho 
and Elnashai (1998) presented an experimental work on retrofitting of RC walls. A selective 
techniques approach is proposed through stiffness, strength or ductility modifications of structural 
elements, intended to improve the overall structural behaviour. Pampanin (2006) presents the concept 
for an alternative seismic retrofit strategy - selective weakening approach - which focuses on reduction 
the earthquake demands and protecting undesirable seismic response mechanisms by first strategically 
weakening specific elements within a structure. Ireland et al. (2006) present an experimental work 
related to the implementation of a selective weakening retrofit approach to shear deficient structural 
walls in order to eliminate an undesirable shear mechanism. The implementation of this strategy 
involves a vertical cut of the wall, ensuring the formation of a ductile failure mechanism. In a second 
stage, the authors propose an upgrading of the element behaviour through the application of recent 
technological developments in building systems [Pampanin (2005)]. Such as, ensuring rocking 
behaviour to minimize damage (achieved through a horizontal cut) and a self-centring behaviour in 
order to minimize the residual displacements after seismic response (through the introduction of post-
tensioning). Kam et al. (2010) present a summary of a research work developed regarding the 
implementation of a selective weakening approach to non-ductile RC beam-column joints, proposing a 
cut at the interface beam/column and/or introduction of post-tensioning, in order to achieve a ductile 
failure mechanism. 
 
To increase the deformation capacity of the compressive zone, several researchers have report 
significant improvements in the seismic behaviour of RC subassemblages, such as, beam-column 
joints regions, strengthening with HPFRC (High Performance Fibre Reinforced Concrete) [Dogan and 
Krstulovic-Opara (2003); Fischer and Li (2003); Parra-Montesinos (2005); Shannag et al. (2005)]. 
Gião et al. (2012) presented a strengthening solution for reinforced concrete structures with a 
unidirectional fibre reinforced grout small thickness jacketing (UFRG), in order to delay concrete 
crushing and buckling of longitudinal reinforcement in the compression side of the RC element. 
Knowing that the behaviour of a composite is influenced by the properties of the cementitious matrix 
and fibres, continuous and unidirectional steel fibres (set in the form of a mat) exhibited the 
appropriate features in order to achieve the required mechanical properties of the composite. 
 
 
3. EXPERIMENTAL PROGRAM  
 
The experimental program included the development and testing of a full scale beam-column 
reference connection (specimen S1). The experimental test was carried out according with a cyclic test 
procedure starting from the gravity load effects. 
In order to correct or improve the observed hysteric behaviour of the reference beam-column 
connection, a selective technique approach was implemented and two strengthening solutions were 
developed and tested. In the first solution unbonded post-tension tendons were used (specimen S2). In 
a second stage, a small thickness jacketing with unidirectional fibre reinforced grout (UFRG) was 
added to the post-tension system (Specimen S3).  
 
3.1. Specimens geometry and reinforcement details 
 
Assuming that the basic principle of the weak beam - strong column is attained [EN 1998-1 (2004)], 
i.e., that the plastic hinge forms in the beam, the experimental study focused on the analysis of the 
behaviour of the RC beam.  
The reinforced concrete reference specimen was a T-beam, designed to exhibit normal ductility, with a 
cross-section 250 mm wide by 500 mm high (Fig. 3.1).  
In terms of mechanical characteristics the average cylindrical compressive strength at the time of the 
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Table 4.1. Performance evaluation parameters 
 

Description 
Fmáx 
(kN) 

Fmáx/FS1 
Displacement 
ductility –/+ (*) 

µ=du/dy 

Energy 
dissipation 
W (kNm) 

W/WS1 
Residual 

deformation 
dr (mm) 

dr/drS1 

S1 specimen 212.5 - 10.4 - 28.6 - 126.2 - 
S2 PT 260.1 1.22 7.7 2.4 43.8 1.53 71.2 0.56 
S3 PT + UFRG jack. 293.0 1.38 6.4 6.1 57.2 2.00 58.7 0.47 
(*) – corresponds to negative moments bending direction (hogging) 

+ corresponds to positive moments bending direction (sagging)  
 
The ratio Fmáx/Fs1 corresponds to the increase of the bearing capacity, through which can be concluded 
that the strengthening solution with external post-tensioned achieved a 22% increasing in the 
resistance of the connection. The addition of the UFRG jacketing on the bottom side of the RC beam it 
was attained a strength increase of 38% relatively to the reference specimen. 
 
Through the analysis the parameter W/WS1, that represents the energy dissipated gain, it should be 
noted that with the strengthening solutions a considerable increasing can be attained. The connection 
strengthened with external post-tensioning had an energy dissipation increase of 53% relatively to the 
reference specimen. On the other hand, the connection strengthened with external post-tensioned and 
UFRG jacketing had energy dissipation increase of 100% relatively to the reference specimen.  
 
The reference specimen exhibit a large accumulation of negative deflection (hogging), however 
ductility for positive moments (sagging) wasn´t mobilized because longitudinal bottom reinforcement 
remained on the elastic range until the end of the test. On the other hand, the first strengthening 
solution mobilized a level of ductility in the direction of negative moments, which is higher than the 
level of ductility in the direction of positive moments. However, the second solution showed a level of 
ductility similar in both directions. This behaviour is due to the recentring capacity of the 
strengthening system. 
 
From the analysis of the parameter dr/drS1, it can be observed that with the strengthening solutions a 
considerable reduction of the residual deformation was attained. The connection strengthened with 
external post-tensioning had a reduction of 44% relatively to the reference specimen. The connection 
strengthened with external post-tensioning and UFRG jacketing had a decrease of residual 
deformation of 53% relatively to the reference specimen. These observations indicate a more 
recentring behaviour and an increase in the restoring capacity of the strengthening connections. 
 
It can be concluded that there was an increase of dissipated energy with the strengthening solutions, 
combined with increased strength, and a reduction of the residual deformation. 
 
5. CONCLUSION  
 
The cyclic test of specimen S2 shows an improvement of the beam-column connection hysteretic 
behaviour through an increase of energy dissipation capacity, combined with strength increase and 
reduction of the residual deformation. The test starts from the gravity effects of the strengthened 
connection with external post-tensioning and its behaviour indicates a more recentred hysteretic 
response and an increase in the restoring capacity of the connection. 
The strengthening solution with UFRG (unidirectional fibre reinforced grout) jacketing, in addition to 
the external post-tensioned - specimen S3-, was able to delay concrete crushing and buckling of 
longitudinal reinforcement. Therefore, the connection presents a more stable response and less damage 
than in the other tests performed. 
The analysis of the performance parameters of the strengthened connections (S2 and S3), compared to 
the reference specimen (S1), leads to the following observations: 

- The strengthening solution S2 achieved a strength increase of 22% whereas the solution S3 
registered a strength increase of 38%; 

- In terms of energy dissipation, the specimen S2 had an improvement of 53% and specimen S3 an 



 

increase of 100%; 
- The connection strengthened with UFRG jacketing exhibit a level of ductility similar in both 

directions; 
- The reduction of residual deformation in specimen S2 was 44%, whereas in the specimen S3 it was 

53%. 
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