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SUMMARY 

Tapered elements in general and haunched beams in particular have been traditionally difficult to model in a 

practical manner. Leading commercial software worldwide for structural analysis such as ETABS or STAAD-

Pro started to include them in their element libraries near year 2000; however, often the software´s manual does 

not describe the details of the numerical modelling. As many structural engineers worldwide use this software, it 

is of paramount importance to evaluate how accurate the solutions obtained with commercial software are, 

particularly for building in seismic zones, where reasonable estimates are crucial for displacement-based design 

methods. In this paper the approximations obtained with commercial software for a set of RC frames with 

symmetric haunched beams under lateral loading are reported when compared to those obtained with a 

traditional beam theory. It is shown that the modelling used in commercial software is in general reasonable, but 

it leads to an underestimation of the lateral displacements.  
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1. INTRODUCTION 

 

Haunched beams are used in bridges and buildings for many reasons (i.e., Tena-Colunga 1994), 

among them as they favor a more efficient use of materials to clear a given span or to provide a 

reasonable clear height for the stories of buildings. 

 

Structural engineers devoted to the design of real-life structures have a need for practical but accurate 

enough tools to help them design properly complex structures. However, for many years, the most 

practical aid that they had for the elastic analysis of haunched beams was the handbook of frame 

constants for nonprismatic members (“Handbook” 1958) published by the Portland Cement 

Association (PCA), where some hypotheses were taken to simplify the problem. Despite their 

usefulness, it was later found that using the frame constants of this handbook could lead to significant 

errors, especially for deep haunches (El-Mezaini et al. 1991, Tena-Colunga 1996). 

 

Likewise, many researchers worldwide have worked in the past four decades with the goal of 

providing an accurate elastic modeling of tapered beams, although few of them kept in mind that their 

proposed formulations must be practical enough in order to be implemented later in the software used 

by design engineers. Among the proposed solutions worth mentioning are those based upon classical 

beam theory (i.e., Just 1977, Schreyer 1978, Eisenberger 1985, Tena-Colunga 1996), the calculus of 

variations (i.e., Medwadovski 1984, Brown 1984), the transfer stiffness method (Luo et al. 2007), or 

the finite element method (i.e., Rajasekaran 1994, Shooshtari and Khajavi 2010, Failla and Impollonia 

2012).  

 

Some recent studies have focused in trying to further improve existing finite element formulations for 

Bernoulli-Euler and Timoshenko beams (Shooshtari and Khajavi 2010, Failla and Impollonia 2012). 

Nevertheless, their numerical examples, primarily single tapered beams with complex variations along 

their longitudinal axis, are only compared to standard finite element solutions. On this regard, it has 

been previously shown that the approximations obtained with formulations based upon classical beam 



theory (i.e., Tena-Colunga 1996) for T-haunched beams in single frame models (Tena-Colunga 2003) 

are good enough for practical purposes when compared to the results obtained by others (Balkaya 

2001) with three-dimensional finite element models.  

 

Indeed, tapered elements in general and haunched beams in particular have been traditionally difficult 

to model in a practical manner and that was the main reason that most commercial software did not 

include them in their elements libraries for many years. In fact, it was until near year 2000 when 

leading commercial software worldwide for structural analysis such as ETABS (since version 6) or 

STAAD-Pro started to include them in their element libraries. However, in some cases, the minimal 

technical information provided within the software´s manual (i.e., Bentley-2008 2008) does not 

describe the details of the numerical modeling. It is not completely clear to the user whether the 

modeling is based on rigorous traditional methods or is it just an approximation based upon the 

calculus of variations. As many structural engineers worldwide use this software, it is of paramount 

importance to evaluate how accurate the solutions obtained with commercial software are when 

compared to those obtained with a recognized method already proposed in the literature. It is 

particularly important for building in seismic zones, where reasonable estimates are crucial for 

displacement-based design methods. 

 

Therefore, in this paper the approximations obtained with commercial software for a set of RC frames 

with symmetric haunched beams under lateral loading are reported when compared to those obtained 

with a traditional beam theory when shear deformations are included as presented by Tena-Colunga 

(1996). The parametric study is reported in detail in Martínez-Becerril (2011) and it is briefly 

described in following sections. 

 

 

2. MODELING OF NONPRISMATIC BEAMS WITH COMMERCIAL SOFTWARE 

 

As mentioned earlier, two commercial programs for structural analysis were evaluated in this study: 

ETABS as per version 9.6.0 and STAAD-Pro as per release 2007. Whereas the information provided 

in the reference manual for ETABS is reasonable to understand how the modeling of non-prismatic 

sections is done, the information available in the reference manual for STAAD-Pro gives no clue 

about the selected modeling. 

 

According to the analysis reference manual provided for ETABS version 9.6.0 (CSI-2005 2005), one 

can model non-prismatic beams by dividing the element length into any number of segments; these do 

not need to be of equal length. Non-prismatic section properties are interpolated along the length of 

each segment from the values at the two ends.  The variation of the bending stiffness may be linear, 

parabolic, or cubic over each segment of length. The axial, shear and torsional properties all vary 

linearly over each segment. Section properties may change discontinuously from one segment to the 

next. If a shear area is zero at either end, it is taken to be zero along the full segment, thus eliminating 

all shear deformation in the corresponding bending plane for that segment. Therefore, as described by 

the analysis reference manual of ETABS, the modeling of non-prismatic beams is an approximation 

based upon the calculus of variations. 

 

According to the technical reference manual for STAAD-Pro release 2007 (Bentley-2008 2008), 

cross-sectional properties of tapered I-sections are calculated from the key section dimensions, and 

these properties are subsequently used in analysis. The user must enter the depths of the web section; 

the depth of the web section at starting node should always be greater than the depth of section at 

ending node, then, the user must provide the member incidences accordingly.  Therefore, a linear 

tapering of the web of an I section is apparently rigorously modeled in STAAD-Pro, according to a 

classical beam theory, but the provided information in the technical reference manual is not clear on 

this regard. It is worth noting that uniformly distributed moments cannot be assigned to tapered 

members for analysis in STAAD-Pro. STAAD-Pro has the limitation of modeling strictly tapered 

elements for I sections only, but approximations for T and rectangular sections can also be achieved, 

as the user is allowed to provide different thicknesses and widths for the top and bottom flanges. 



3. DESCRIPTION OF THE MODELS OF STUDY 

 

Symmetric haunched beams are frequently used in reinforced concrete moment-resisting framed (RC-

MRF) office buildings in Mexico City (Fig. 3.1). Given that the earthquake hazard of Mexico City is 

high, it is important to evaluate the approximations obtained with commercial software for RC-MRFs 

with haunched beams under lateral loading. 

 

  

Figure 3.1. Reinforced concrete buildings with haunched beams under construction in Mexico City 

 

In order to evaluate such approximations, a parametric study was designed considering the most 

common dimensions and characteristics currently used in Mexico City for such office buildings. 

Therefore, the following was considered for the regular and symmetric RC-MRFs with haunched 

beams under study (linear tapering of the web depth), as schematically depicted in Fig. 3.2: (a) three 

building heights: 5, 10 and 15 stories, with a typical story height of 3.5 meters ( 11.48 ft), (b) 2-bay 

frames and 3-bay frames, (c) four different lengths or span (L) for the bays: 7.0, 8.5, 10 and 12 meters 

(22.97, 27.89, 32.81 and 39.37 feet), (d) two different proportions of the haunching length (Lh) with 

respect to the beam span (L): Lh/L=1/3 and Lh/L=1/5 (Fig. 3.3) and, (e) two different proportions of the 

haunching depth (hmax) with respect to the minimum depth of the beam (ho): hmax/ho=2 and hmax/h0=3.  

 

 
Figure 3.2. Summary of the conducted parametric study for the RC-MRFs with haunched beams 

 

It is worth noting that taking into account recommendations from engineering practice, for simplicity, 

it was considered that hmax=L/10 for all models. All reinforced concrete beams were considered of 

having a T-cross section, with a web width b=h0, a flange thickness t=10 cm (4 inches) and a flange 

width bf=b+16t. It is worth noting that dimensions for the flange of the T cross section are based on 

considering the contribution of the slab as an equivalent flange. The width and thickness of the 

equivalent flange are those specified by the building code of Mexico City for stiffness modeling under 

lateral loading and to account indirectly for shear lag effects. For simplicity, all columns were 

assumed of square cross sections having a width equal to h= hmax=L/10.  Therefore, the conducted 

parametric study involved 96 different frames (Fig. 3.2).  
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Figure 3.3. General geometry of the studied symmetric haunched beams 

 

 

4. ANALYSES AND RESULTS 

 

An inverted lateral load distribution was considered for the static analysis. For all frames, the total 

applied lateral load at the roof level was 100 Ton (220.26 kips) evenly distributed at both corner nodes 

(Fig. 4.1). Therefore, the applied base shear was 300 Ton (660.79 kips) for the five-story models (Fig. 

4.1), 550 Ton (1,211.45 kips) for the ten-story models and 800 Ton (1762.11 kips) for the fifteen-story 

models. 

 

 
Figure 4.1. Applied lateral loads for the five-story models 

 

Haunched beams of the studied RC-MRFs were modeled with ETABS using three segments per 

haunch beams. Two modeling options were used: a) linear variation of the bending stiffness 

(“ETABS-1”) and, c) cubic variation of the bending stiffness (“ETABS-3”). This was done as one may 

assume a-priori that the best approximation would be obtained with the cubic variation of the bending 

stiffness, as it is a closer modeling to the way the bending stiffness varies in a linearly tapered 

haunched beam, and the worst approximation would be obtained with the linear variation. 

  

Because STAAD-Pro as per version 2007 has just one modeling option (apparently linear tapering of I 

beams), this was the modeling used and is identified as “STAAD”. The T section was approximated 

by specifying a very small thickness and a width equal to the web width for the bottom flange while 

modeling rigorously the top flange. This modeling yields in obtaining the same moment of inertia and 

almost the same shear area that a rigorously modeled T-section. 

 

In DRAIN-2DX software (Prakash et al. 1992), the user is allowed to specify particular stiffness 

coefficients to model tapered elements and haunched beams. Therefore, for the traditional beam theory 

where shear deformations are included, the stiffness coefficients of the complete haunched beam were 

computed as presented by Tena-Colunga (1996) and then including them into the DRAIN-2DX input 

files. It is worth noting that the stiffness coefficients for the linearly varying haunched beams of T 

cross sections under study could also be retrieved using the tables developed by Tena and Zaldo, 

which are already published in the literature (Tena-Colunga 2007). This modeling option is identified 

as “THEORY” when discussing the results. 

 

4.1 Lateral Displacement Profiles 

 

The lateral displacement profiles for the 96 studied frames are compared and reported in detail in 

Martínez-Becerril (2011) and some of the most interesting results are depicted in Figs. 4.2 to 4.8 and 
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briefly discussed in following paragraphs. To ease the comparisons, in each graph all lateral 

displacements are normalized with respect to the roof displacement of the studied frame obtained 

under the traditional beam theory (“THEORY”). The following short notation is used in Figs. 4.2 to 4.8 

to identify the frame characteristics: jjNiB, where jj identifies the number of stories (5, 10, 15) and i 

the number of bays (2 or 3). It is worth noting that the following short notation is also used in Figs. 4.2 

to 4.8, following the common notation originally proposed in PCA´s handbook of frame constants for 

nonprismatic members (“Handbook” 1958) and in Tena-Colunga (1996).  The normalized left () and 

right () haunched lengths are defined as: 

 

L

Lh             (4.1) 

 

whereas the relative haunched depth () is defined as: 

 

0

0max

h

hh 
            (4.2) 

 

The results obtained for the three-bay frames are depicted in Figs. 4.2 to 4.8, as they are very similar 

(almost identical) to those obtained for the two-bay frames (not shown), as it can be deducted by 

comparing the obtained curves depicted in Fig. 4.7 (three-bay frames) and Fig. 4.8 (two-bay frames) 

for the fifteen story models with bay lengths L=10m and L=12m. 

  

The following general observations can be done by comparing Figs. 4.2 to 4.8: 

 

a) Excellent approximations (between 98% and almost 100%) are obtained under the STAAD-

Pro modeling (STAAD) with respect to the traditional beam theory with shear deformations 

(THEORY) for all the models under study. The number of stories and the bay length (L) has a 

negligible impact on the approximations. However, it seems that the relative haunch depth () 

has a reduced impact on the approximation, as better approximations are obtained for =2 

when compared with =1 (compare for example models 5N3B, 10N3B and 15N3B for 

==1/5), that is, apparently approximations improve as  increases. Nevertheless, it seems 

that the most significant variable that impacts the approximations are the normalized haunch 

lengths  and . Better approximations are obtained for ==1/5 when compared with 

==1/3 (compare for example models 5N3B, 10N3B and 15N3B when =2), that is, 

apparently approximations improve as  decreases. 

b) Relatively poor approximations (between 62% and 80%) are obtained under the ETABS-1 

modeling (linear variation of the bending stiffness) with respect to the traditional beam theory 

with shear deformations (THEORY) for all the models under study. The number of stories and 

the bay length (L) has a reduced impact on the approximations. However, the most significant 

variable that impacts the approximations is the relative haunch depth (). Better 

approximations are obtained for =1 when compared with =2 (compare for example models 

5N3B, 10N3B and 15N3B for ==1/5 or ==1/3), that is, apparently the level of 

approximation decreases as  increases. Approximations are also affected by the normalized 

haunch lengths  and . Better approximations are obtained for ==1/5 when compared with 

==1/3 (compare for example models 5N3B, 10N3B and 15N3B when =2), that is, 

apparently approximations worsen as  increases. 

c) Reasonable approximations (between 78% and 88%) are obtained under the ETABS-3 

modeling (cubic variation of the bending stiffness) with respect to the traditional beam theory 

with shear deformations (THEORY) for all the models under study. The number of stories and 

the bay length (L) has a reduced impact on the approximations. In coincidence with ETABS-1 

modeling, the most significant variable that impacts the approximations is the relative haunch 



depth (). Better approximations are obtained for =1 when compared with =2 (compare for 

example models 5N3B, 10N3B and 15N3B for ==1/5 or ==1/3), that is, apparently the 

level of approximation decreases as  increases. Likewise, approximations are also affected by 

the normalized haunch lengths  and . Better approximations are obtained for ==1/3 

when compared with ==1/5 (compare for example models 5N3B, 10N3B and 15N3B when 

=1), that is, apparently approximations improve as  increases. 

 

 
Figure 4.2. Normalized lateral displacements for five-story, three-bay frames with bay widths L=7m and 

L=8.5m 

 

 
Figure 4.3 Normalized lateral displacements for five-story, three-bay frames with bay widths L=10m and 

L=12m 



 
Figure 4.4. Normalized lateral displacements for ten-story, three-bay frames with bay widths L=7m and L=8.5m 

 

 
Figure 4.5. Normalized lateral displacements for ten-story, three-bay frames with bay widths L=10m and L=12m 

 

4.2 Bending Moments 

 

To complete the picture, bending moments at the (haunched) beam ends obtained with the software 

under study were normalized with respect to those obtained with a traditional beam theory with shear 

deformations. The results are reported in detail in Martínez-Becerril (2011). The most noticeable 

differences were observed in frames 10N2B and 10N3B; however, for space constraints, the 

normalized bending moments for frame 10N2B (==1/3, =2 and L=7m) are only briefly discussed. 

Approximations for the bending moments are very good (from 0.98 to 1.02) for the STAAD-Pro 



modeling for all haunched beams along the height of the building, increasing the normalized bending 

moment from top to bottom stories. Similarly, approximations for the bending moments are good 

(from 0.82 to 0.99) for the ETABS-3 modeling for all haunched beams along the height of the 

building, having much closer approximations at the bottom stories, that is, approximations improve 

from top to bottom stories. In contrast, approximations are inconsistent and not good enough (from 

0.73 to 1.08) under the ETABS-1 modeling. 
 

 
Figure 4.6. Normalized lateral displacements for fifteen-story, three-bay frames with bay widths L=7m and 

L=8.5m 

 

 
Figure 4.7. Normalized lateral displacements for fifteen-story, three-bay frames with bay widths L=10m and 

L=12m 



 
Figure 4.8. Normalized lateral displacements for fifteen-story, two-bay frames with bay widths L=10m and 

L=12m 

 

 

5. CONCLUDING REMARKS  

 

Many structural engineers worldwide use commercial software such as ETABS or STAAD-Pro to 

analyze structures with haunched beams. Therefore, it is of paramount importance to evaluate how 

accurate the solutions obtained with commercial software are when compared to those obtained with a 

recognized method already proposed in the literature, particularly for building in seismic zones, where 

reasonable estimates for the lateral displacements under earthquake loading are crucial for 

performance-based design methods. 
 

In this paper, the approximations obtained with commercial software for a set of 96 RC-MRFs with 

symmetric haunched beams (linear tapering of the web depth) under lateral loading are reported when 

compared to those obtained with a traditional beam theory when shear deformations are included. 

Based upon the results of the reported parametric study, the considered building heights, number of 

bays and length of the bays (L) have a reduced impact on the approximations of the methods used in 

commercial software with respect to those obtained with a traditional beam theory for linearly tapered 

haunched beams.  

 

However, the most significant variables that impact the approximations are the normalized haunch 

lengths  and  and the relative haunched depth , particularly for the modeling options of ETABS. 

For all the studied software, the level of approximation apparently decreases as  increases. The level 

of approximation decreases as  and  increases for STAAD-Pro and when a linear variation of the 

bending stiffness is considered in ETABS. However, the level of approximation in ETABS increases 

as  and  increases when a cubic variation of the bending stiffness is used. 

 

Based upon these observations and the availability of software, it can be recommended the following 

for the numerical modeling of RC-MRFs with symmetric haunched T-beams (linear tapering of the 

web depth) under lateral loading: (1) one can use with confidence STAAD-Pro for an accurate 

modeling of haunched T-beams of such frames (approximations between 98% and almost 100%), (2) 



when using ETABS, a cubic variation of the bending stiffness must be used in order to get good 

results for haunched beams, as reasonable approximations (between 78% and 88%) were obtained for 

haunched T-beams of RC-MRFs under such modeling and, (3) as relatively poor approximations 

(between 62% and 80%) were obtained with ETABS when a linear variation of the bending stiffness 

was used to model haunched beams, such modeling option should be avoided for haunched T-beams 

similar to those that were studied. 
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