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SUMMARY: 

The NiTi alloy belongs to the shape memory alloys class of materials, therefore it presents both shape memory 

effect, for thermally-induced cycling, and superelasticity, for stress-induced cycles. The superelastic property has 

been the basis of some devices designed to mitigate the earthquake hazard level in structures. Throughout this 

paper the implementation of a one-dimensional cyclic behavior algorithm to model the NiTi constitutive relation 

is presented, supported by the thermomechanical formulation developed by Lagoudas and co-workers. The 
model accounts for isothermal superelastic behavior, incorporating minor hysteretic transformation loops and a 

new definition of the transformation hardening function. The validation process consisted on the comparison 

between the results achieved with this algorithm and experimental tests performed at the Pacific Earthquake 

Engineering Research Center at the University of California at Berkeley. The model was able to replicate the 

results from the experimental works. 
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1. INTRODUCTION 

 

Shape memory alloys (SMAs) are a class of materials, which possess particular thermo-mechanical, 
thermo-chemical or thermoelectric properties, which allows for the phase transition between two solid 

phases. The Nickel-Titanium (NiTi) alloy is one example of such materials and it has specific 

properties, which justify its usage in civil engineering applications. Amongst other properties, this 
alloy has the capacity of undergo large strain deformation and recover its original shape, through 

stress or temperature induced cycles. Energy dissipation is also associated with this hysteretic cyclic 

behavior. 

 
The shape memory alloys may exist in two different crystal configurations, the austenitic and the 

martensitic. The austenitic phase is stable at higher temperatures and it is stiffer. The martensitic phase 

is stable for lower temperatures and it is more deformable. At higher temperatures where there is only 
the austenitic phase for zero stress loading, stress-induced deformation occurs associated with a phase 

transformation from austenite to martensite (forward transformation). After unloading, the material 

regains the original austenitic structure (reverse transformation), dissipating energy through hysteretic 

loops. This behavior is designated as superelasticity [Lagoudas (2008), Aiken et al (1992), Otsuka and 
Wayman (1998)]. In Figure 1 the shape memory effect and the superelastic properties are presented in 

the stress-temperature plan. For constant temperature the superelasticity occurs for stress-induced 

deformation (vertical arrows), for constant stress the temperature-induced deformation leads to the 
shape memory effect (horizontal arrows). 

 

In the recent decades, several studies were conducted to test the application of SMA technology to 
civil engineering structures. Most of the projects developed take advantage of the re-centering 

capacity and the hysteretic energy dissipation, due to superelasticity, to achieve an improvement in 

seismic behavior of structures [Song et al (2006), Manside Project (1999)]. 



 

Ma and Cho (2008) and Dolce et al (2000) explored the re-centering ability and the hysteretic energy 

dissipation through the design of SMA dampers. Devices composed by pre-stressed austenitic wires, 

springs and martensitic wires were tested and validated through shake table tests, with good results. 
Also with the purpose of controlling the residual displacements after the event of an earthquake, 

Johnson et al (2008) performed shake table testing combined with numerical models of restrainers to 

control relative displacements at joints in reinforced concrete bridges. Compared to classical solutions, 
higher energy dissipation and a reduction of 50% in the maximum openings were achieved. 

 

 
 

Figure 1. Shape memory effect (SME) and superelasticity (SE) properties presented in the stress-temperature 
plan. The s and f indexes stand for the start and finish temperatures for the forward (M) and reverse (A) 

transformations. All temperatures are defined for zero stress conditions. 

 

There are only a few case-studies were the SMA technology was implemented in actual retrofits of 

existing structures. As examples there is the retrofit of the bell-tower of the Church of S. Giorgio in 

Trignano Italy [Indirli et al (2001)], the transept tympana of the Basilica of S. Francisco of Assis also 
in Italy [Croci (2001)] and the rehabilitation of the Sherith Israel Synagogue in San Francisco [Paret 

and Freeman (2008)]. These few interventions are representative of the improve in performance which 

is possible to achieve with SMA based devices. Besides all the justifications presented so far, these 
devices, in series with traditional steel ties, allow a better performance than traditional techniques, due 

to the control of the applied seismic forces, together with excellent properties against corrosion. 

 
This paper intends to develop an algorithm that models the one-dimensional behavior of NiTi wires, 

based upon the thermo-mechanical formulation of Lagoudas and co-workers [Lagoudas (2008)]. Its 

accuracy was tested against experimental results of works performed at the Pacific Earthquake 

Engineering Research Center in the University of California at Berkeley [Aiken et al (1992)]. 
 

2. SUPERELASTIC CONSTITUTIVE MODEL 

 
In the past 25 years, there has been a continuous development of constitutive models that could predict 

the phase transformation of SMAs. For example, Tanaka (1986) developed an exponential hardening 

model, which considered the material properties to be kept constant during transformation. Liang and 

Rogers (1990) used a formulation based upon the Helmotz free energy and a cosine hardening rule for 
phase transformation. Auricchio and Sacco (1997) used a linear hardening law to model the isothermal 

superelasticity, by accounting for the change in elastic properties during phase transformation. Further 

references are addressed in Lagoudas (2008). 
 

The subroutine implemented in this work for the constitutive model of SMA uses the thermo-

mechanical framework developed by Boyd and Lagoudas (1996), with some adaptations to account 
for inner loops and it also uses a more adaptable hardening function. The formulation considers the 

conservation laws and the basic principles of continuum thermodynamics. Although the original 

formulation was intended for a three-dimensional body, the algorithm presented in this work uses the 

one-dimensional simplification [Machado (2007)], accounting only for the axial stress and strain, 
since only SMA wires were considered in this study. As well, only the superelastic behavior was 

considered. 



 

For the definition of the constitutive equations, state variables were necessary to evaluate the 

consistency of the system for each step of the load case. In this formulation, the Gibbs free energy is 

used as the thermodynamic potential, since for the characterization of SMA is usual to work in the 
stress-temperature space. 

 

2.1. State variables 
 

At each stress point, an austenitic, a twinned martensite and a detwinned martinsite fraction are 

possible to coexist. To evaluate the amount of each phase, two internal state variables were 

considered, the martensitic volume fraction, ξ, and the transformation strain, εt. The variable ξ varies 

between 0, when the material is in the fully austenitic phase and 1, for the fully martensitic phase. 

During the transformation phase, ξ assumes values between 0 and 1. In this formulation there is no 

distinction between twinned phases of the martensite. 

 

 
 

Figure 2. Different load paths for the stress-induced cycles. (1) Major loop loading; (2) Major loop unloading; 
(3) Minor loop loading; (4) Minor loop unloading; (5-6) austenite elastic behavior; (7-8) martensite elastic 

behavior 

 

The total strain is the sum of the thermoelastic part and the inelastic strain. The inelastic strain 

accounts for the transformation strain and the strain associated to plasticity due to yielding. In the 
formulation adopted, the strain associated to yielding, which is responsible for the residual strain, was 

assumed to be negligible after a preliminary training stage. 

 
Furthermore, the transformation strain is considered to allow for total recoverable transformation, until 

transformation strains in the order of 6%. For these range of strains, the use of small strain formulation 

is acceptable, so the equilibrium equations may be defined in the undeformed configuration. The 

transformation strains vary from 0, for the austenitic phase, to a maximum transformation strain 
(HMax), for the full martensitic phase. 

 

As this model does not consider the reorientation of the martensitic variants, the variation of the strain 

transformation ( ) is considered equal to the variation of the martensitic fraction ( ), times the 

maximum transformation strain (HMax), which is designated as the flow rule. Therefore, the 

transformation strain is no longer an independent state variable and for the one-dimensional model, 

there is a linear relation between ξ and εt
. 

 

In addition to the previous variables, there were several auxiliary variables considered, so the 

algorithm could determine which loading path to take, according to its state at the beginning of the 
step. As shown in Figure 2, there are 8 possible states for the SMA to present at each load step, 

according to: a) direction of the transformation (forward or reverse); b) type of loop (major/outer or 

minor/inner); c) reversal in direction; or d) if the material is in the elastic region (austenitic or 
martensitic) or in the transformation region. 

 

2.2. Outer/major hysteresis loop 



 

If the material is undergoing transformation between austenite and martensite through the outer 

hysteretic loop, the computation for this case is defined as follow, using the formulation presented by 

Lagoudas (2008), Boyd and Lagoudas (1996) and Machado (2007). 
 

To define the thermomechanical constitutive relations in the transformation region, the 

thermodynamic potential given by the Gibbs free energy (G) was considered, which is dependent on 

the stress (σ), temperature (T), the martensitic volume fraction (ξ) and the transformation strain (εt
). G 

was adapted for SMAs in Eq. 2.1. 

 

 (2.1) 
 
S is the inverse of the modulus of elasticity (E), α is the thermal expansion coefficient, c is the 

effective specific heat, s0 is the effective specific entropy, ρ is the specific mass and u0 is the effective 

specific internal energy. As suggested by Lagoudas (2008), all these material constants are linear 

functions of the state variable ξ. For the approach presented, which does not account for 
micromechanics, this assumption is acceptable. T0 is the temperature considered as reference and ρ is 

the specific mass of the material. The function f(ξ) is a transformation hardening function, which will 

be analyzed ahead. 
 

The inequality of Clausius-Planck (Eq. 2.2) applied to SMAs was obtained from the development of 

the second law of thermodynamics and applying to the Gibbs free energy (Eq. 2.1). As a result a 
general thermodynamic force (π) is defined (Eq. 2.3). 

 

 (2.2) 

  

 (2.3) 
 

At each instant there are three possible scenarios: a) the forward transformation is in progress; b) the 

reverse transformation is in progress; c) there is no transformation. When the forward transformation 

takes place,  has positive values, as martensite is transformed from austenite. To satisfy the Clausius-

Planck inequality (Eq. 2.2), π has to assume positive values. For the reverse transformation,  assumes 

negative values, therefore π also has to present negative values. In the third case where there is no 

transformation ( =0), π may assume any value. 

 
These considerations may be rewritten in the form of a transformation function (Φ) (Eq.2.4), which 

represents the transformation surface between ξ=0 and ξ=1, and for each transformation path, Φ 

satisfies the Clausius-Planck relation. The phase transformation is assumed to begin when the 

thermodinamical force (π) reaches a critical value Y, constant for the entire transformation phase. 

Therefore, according to Eq. 2.4, when either the forward ( ) or the reverse ( ) transformations are 

undergone, Φ equals zero. Furthermore Eq. 2.4 may be rewritten in the equivalent format of the Kuhn-

Tucker condition, as . 

 

 (2.4) 
 



In addition, the phase transformation has to be kept on the transformation surface, by satisfying the 

consistency condition of =0. This condition assumes that the SMA has a rate-independent behavior 

due to its diffusionless nature, whereas the loading/unloading process is rapid enough to avoid any 
diffusion-controlled process. This assumption is considered as a valid approximation for the spectrum 

of frequencies tested in this study, according to experimental results [Lagoudas (2008)]. 

 

2.3. Inner/minor hysteresis loops 

 

 The definition of the minor hysteresis loops is necessary when the forward transformation halts before 

reaching the full martensitic phase (4 in Figure 2) or when the reverse transformation changes 
direction before recovering its austenite shape (3 in Figure 2). As the objective of this work is to 

achieve a simple model that could simulate the superelastic behavior of SMA wires, a simpler 

formulation was considered taking the major hysteresis loop formulation as background. For a more 
accurate model, Bo and Lagoudas (1999) developed a thermomechanical formulation, which could be 

incorporated in the major loop model, which used the Preisach model. 

 

A few assumptions were considered: a) the phase transformation will start immediately after the 
reversal of the loop; b) the amount of energy dissipated during a minor loop phase transformation 

cycles should be variable depending on the martensitic volume fraction at the reversal point ( ) of 

the nth order branch of the hysteresis curve; c) when approaching ξ =0 for the reverse transformation 

or when approaching ξ =1 for the forward transformation, the minor loop tends to the configuration of 

the major loop. 

 
The parameter Y which was assumed as a constant for the outer loop, now it is considered as a 

variable Yn depending on ξ (martensitic volume fraction at each step) and . When a reversal takes 

place, the transformation functions for forward and reverse transformation have to be both null for the 

same value of ξ, according to assumption a). Therefore the value of Yn has to be different from Yn -1, in 

order for the Kuhn-Tucker condition to be valid. 

 
Yn was considered to have an exponential distribution, as presented in Eq. 2.5, to behave closer to the 

experimental results. The forward and reverse transformations where defined separately to satisfy 

assumption c). Consequently, for the minor loops to tend to the major loops in the vicinity of ξ =0 or ξ 

=1, b has to be equal to Y, as defined for the major hysteretic loop. 
 

 (2.5) 
 

Finally, the variable An and the variable γ have to be determined, so this formulation may be fully 

characterized. While γ is a material parameter, which is determined directly from experimental results, 

An, requires further computation. An is constant for each sub-loop and it has to be determined every 
time a reversal in the transformation direction occurs, according to Eq. 2.6. 

 

 (2.6) 
 

2.4. Hardening function 

 
The full characterization of this constitutive model is concluded with the definition of the hardening 



function f(ξ). This function is used to account for the interactions between the two phases in the 

transformation region. The function adopted is presented in Eq. 2.7. The parameters defined for this 

model were considered the same as for the smooth hardening model developed by Machado (2007). 

 

 (2.7) 

 

2.5. Return mapping algorithm  

 

For each time step, this model receives the total strain and delivers the updated value for stress (σ) and 

for the martensitic volume fraction (ξ) at the end of the step. Therefore, the solution is achieved by 

solving a non-linear system of two unknowns and two equations, which are the transformation 

function and the strain equation. To overcome this situation, an iterative procedure was implemented. 

 

The subroutine uses a return mapping algorithm as defined to determine the value of the state variable 

ξ and the stress value at the end of each step. In this case, the convex cutting plane algorithm was 

used. This method is suitable for numerical integration of rate independent inelastic constitutive 

models, as the present one. By using a predictor-corrector formulation, first a thermoelastic step is 

tested and case it does not respect the consistency condition, a correction is applied. The formulation 
used is only valid for isothermal loading, as only the superelastic behavior is being modeled in this 

work. In Machado (2007) this formulation is expanded to account for thermal variation. 

 

For each time step, the transformation function (Φ) and the stress are computed for a new level of total 

strain, assuming there is no change in the martensitic volume fraction. As previously referred the 

Kuhn-Tucker condition imposes that if an increase in strain occurs in the transformation region, then 

an increase in the martensitic volume fraction also has to happen, so the transformation function may 

be equal to zero. If the Kuhn-Tucker condition is not observed within a tolerance of δ<10-8, there is 

the need to correct ξ according to the following equations (Eq. 2.8). This iterative procedure will carry 

on until the transformation function equals zero. 

 

 (2.8)

  

3. VALIDATION 
 

For the purpose of this work, a finite element program was developed in MatLab ®, which could 

account for physical non-linear behavior at the section level. In addition to static analysis, the program 

was developed to compute modal analysis and time history dynamic analysis using the Newmark 
method and to incorporate the previous constitutive model, which simulates the SMAs superelastic 

cyclic behavior. The model performs two-dimensional analysis, where frame elements connected 

through nodes are used to model the structure under study. The section geometry of each element and 
the material constants necessary for the definition of the constitutive models are defined prior to the 

run of the program. 

 

3.1. Experimental tests 
 

After the presentation of the thermomechanical model used to simulate the superelastic behavior of 

NiTi wires, a validation based on experimental results was conducted. The model performance was 



matched up to the results of quasi-static cyclic tensile tests and shake table tests performed by Aiken, 

Nims and Kelly (1992) at the Pacific Earthquake Engineering Research Center of the University of 

California at Berkeley. 

 
The shake table measures 1.42 m by 1.22 m in plan, with one horizontal degree-of-freedom and a 

payload capacity of 45 kN. The tested model was a three story high moment-resistant steel frame. The 

specimen has 0.91 m x 1.22 m in plan and a total height of 1.83 m. A total weight of 18.9kN was 
equally distributed for each floor. The bare model presented damping of 0.5% and its three 

translational frequencies in the direction of excitation were 2.6 Hz, 10.9 Hz and 24.5 Hz. 

 
In these tests, NiTi wires were used as part of the cross-bracing system at each level, placed at each 

diagonal in series with a steel bar for a 0.1m length. This configuration allowed the wires to be kept 

always in tension. A 3% pre-strain was applied to the wires in order for them to work in the 

transformation region and therefore to increase the hysteretic energy dissipation. The specimen was 
tested under a normalized version of the Zacatula ground motion, which was scaled to consider a peak 

ground motion of 0.1 g (0.98 m/s2). 

 
The steel structure was considered to have an elastic behavior throughout the tests, assuming that 

yielding of the steel does not occur. Furthermore, a 2-d model was implemented. The modal 

frequencies, the accelerations and displacements at each level were matched between the bare 
specimen and the numerical model, by changing the bending stiffness of the vertical elements. The 

results obtained are very similar between the experiment and numerical model. 
 

Table 3.1. Material parameters determined according to typical values considered for the calibration of the 

numerical model. 

αA
 [K

-1
] αM [K

-1
] Δc [J.kg

-1
.K

-1
.] C

A [kPa/K] C
M [kPa/K] ρ [kg/m

3
] 

22.0x10
-6 

22.0x10
-6 

0.0 7000 7000 6500 

 

 
Table 3.2. Material parameters determined from the experimental results for the calibration of the model. 

Material 
Parameters 

Static Dynamic Material 
Parameters 

Static Dynamic 

EA [kPa] 24.0x10
6 

70.0x10
6 

T0 [K] 295 295 

EM [kPa] 20.0x10
6 

60.0x10
6 

γ 50 30 

σMS [kPa] 390x10
3 

400x10
3 

n1=n5 20 15 

σMF [kPa] 700x10
3 

950x10
3 

n2=n6 0.6 1.8 

σAS [kPa] 450x10
3 

700x10
3 

n3=n7 4.4 1.5 

σAF [kPa] 250x10
3 

200x10
3 

n4=n8 0.02 1.2 

HMáx [%] 5.2 2.7    

 

3.2. Material parameters 

 

Several material parameters were characterized for the implementation of this constitutive model. The 
parameters defined in Table 3.1 were determined according to literature [Lagoudas (2008), Aiken et al 

(1992), Machado (2007)], where CM and CA are the zero stress slops of transformation regions into 

martensite and austenite. Additionally, the young modulus (E), the stress values for the start and end 
of the forward (M) and reverse transformations (A), the maximum uniaxial transformation strain 



(HMax) and the working temperature (T0) where determined from the experimental tensile results. Also 

the parameters γ for the inner loops and n# for the hardening function were determined iteratively. All 

the values obtained are gathered in Table 3.2 for the tests in static and dynamic conditions. 
 

3.3. Results 
 

At a first stage, the algorithm was tested against three quasi-static cyclic tensile tests. After these 

preliminary tests, the three-story structure was tested for the Zacatula ground motion. In the first test 
the wires were tested with strains up to 5%. In the second test the maximum strain was increased to 

8%. For the third test, the wires were subjected to a pre-stress of 3% strain and cycled in a 4% strain 

interval in dynamic conditions. The results for the three tests are overlapped below for the numerical 

model and the experimental results, in Figure 3 and Figure 4. 
 

In the first two cyclic tensile tests (Figure 3), the experimental results present residual deformation due 

to plastic strain associated with crystal slippage, for the reverse transformation.  Discrepancies up to 
1% residual strain were observed, since this phenomenon was not considered in this formulation. 

Nevertheless, the model was capable to predict the forward transformation outer loop and the reverse 

transformation inner loops, especially for higher strains. 

 
 

Figure 3. Comparison between experimental data and numerical model for small strain (left) and large strain 

(right) tensile test. 

 

 
 

Figure 4. Comparison between experimental data and numerical model for 3% pre-strain tensile test. 

 

After the model was calibrated for the first two tests, its performance was tested when pre-strain is 

added in dynamic conditions (Figure 4). In this case, the material worked only in the transformation 

region, which allowed for an increase in the energy dissipation due to hysteretic behavior. 
Furthermore, the effect of residual deformation is negligible, as a result the model adapts more 

accurately to both the forward and reverse transformations. 
 

As the ability for this model to simulate the behavior of NiTi wires was proved for cyclic tensile tests, 
then it was tested when implemented into a three-story steel structure. In Table 3.3 the comparison 

between the displacements and accelerations at each level are presented for the numerical model and 



for the experimental shake table results. Once again the numerical model results are close to the 

experimental ones, as differences range up to 17%. In Figure 5 the hysteretic behavior of the NiTi 

wires placed in the bracing system of the structure is presented, as obtained from the numerical model 

and compared against the envelope of the experimental results. The envelope has a similar shape to the 
numerical results, although there is some discrepancy for lower strains. The differences in results 

could be associated to the use of a planar model to simulate a 3-dimensional structure, to some 

inelastic behavior from the steel elements, to an inaccurate estimate of the pre-strain in every diagonal, 
besides issues related to changes in the NiTi behavior for dynamic solicitations. 

 
Table 3.3. Comparison between experimental results and numerical model for the specimens tested in the shake 

table at UC Berkeley. 

 Acceleration (m/s
2
) Displacement (m) 

Level Experimental Numerical Ratio (Exp/Num) Experimental Numerical Ratio (Exp/Num) 

3 3.04 3.67 0.83 5.84x10-03 6.34x10-03 0.92 

2 2.58 2.41 1.07 4.20x10-03 4.20x10-03 1.00 

1 1.44 1.43 1.00 2.05x10-03 1.82x10-03 1.12 

 

 
 

Figure 5. Hysteretic behavior of NiTi wire in numerical model subjected to ground motion compared against the 

experimental results envelope 
 

4. FINAL REMARKS 

 

This paper addressed the implementation of a superelastic constitutive model for the NiTi alloy in 
MatLab, which could work as a tool for more elaborate analysis, with the ultimate goal of designing 

SMA based devices for seismic retrofitting of structures. 

 

The framework developed by Lagoudas and co-workers was used to simulate the superelastic behavior 
of the NiTi alloy, in isothermal conditions. The Gibbs free energy was considered as the 

thermodynamic potential, which was developed into a transformation function, which defined the 

transformation surface for the forward and reverse transformations. This formulation was further 
adapted to account for the minor hysteretic loops when a reversal occurs during transformation. 

 

The model was validated and tested against experimental results performed at the Pacific Earthquake 
Research Center at UC Berkeley. Preliminary cyclic tensile testing for NiTi wires with and without 

pre-strain was used to define the hardening function and the material parameters for the model. The 

results obtained in the numerical model presented a behavior similar to the experimental results. 

 
Finally the validated model was implemented in a two-dimensional finite element model in order to 

simulate the behavior of a small-scale steel structure with NiTi wires introduced in the cross-bracing 

system and subjected to a ground motion in a shake table. The results were also satisfactory, as the 
performance of the model, in terms of accelerations and displacements were close to the experimental 



results. The hysteretic behavior of the NiTi wires stands out the energy dissipation capability this 

material has and its potential in civil engineering applications also associated with the re-centering 

ability. 
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