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SUMMARY: 
This paper presents a simplified dynamic model useful for the simulation of earthquake response of 3-dimensional 
multi-story steel moment frames with eccentricity. The simplified dynamic model can be completed with the 
methodology that all beams at each floor level are condensed into two couples of beams in orthogonal direction. All 
columns in each story are also condensed into one representative column. This procedure leads to reduction of the 
number of the freedom in each story. The accuracy of simplified dynamic model is calibrated for a couple of 
benchmark frames with two kinds of ground motions. Errors associated with the model are found to be negligible. 
Therefore, the model proposed here can provide the effective way to identify general earthquake response of 
multi-story steel moment frames with eccentricity. 
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1. INTRODUCTION 
 
It is important to estimate the behavior of multi-story moment frames with eccentricity of the story under 
bidirectional ground motion for seismic design. Concerning the effect of eccentricity, many researchers 
have been investigating with one-mass system or one-story frames before. Conversely, some researchers 
who tried to study on multi-story frames only obtained qualitative results through case studies. In other 
words, a lot of numerical effort is needed to obtain a quantitative estimation of multi-story frames by 
means of complicated models covering wide range of physical parameters. Therefore, more simplified 
analytical model is needed to solve the problems without complicated and elaborate calculation. The 
purpose of the development of the model is to identify essential structural parameters that have effect 
upon earthquake response. The simplified dynamic model has only 6 degrees of freedom in each story. If 
the model can approximate earthquake response of multi-story moment frames with eccentricity, its 
dynamic characteristics can be represented by few structural parameters. Only stiffness eccentricity or 
only strength eccentricity can be considered in the model. Therefore, the analytical method with the model 
is valid way to clarify seismic response characteristics of multi-story moment frames with eccentricity. 
 
 
2. PROPOSAL OF SIMPLIFIED DYNAMIC MODEL 
 
In this chapter, outline of simplified dynamic model is showed. 
 
2.1. Outline of Simplified Dynamic Model 
 
The authors propose a simplified dynamic model, which is useful for the simulation of earthquake response of 
3-dimensional multi-story steel moment frames with eccentricity. The model is shown Figure 2.1.1. The 
constitution of the model can be completed with the methodology that all beams at each floor level are 
condensed into two couples of beams in orthogonal direction. All columns in each story are also 



 

condensed into one representative column. The effect of eccentricity by taking account of radius distance 
that expresses resistance against torsion in each story and eccentric distance are considered in the model. 
Here, the radius distance and the eccentric distance are concerned with inertial characteristics and with 
rigidity and strength of structural elements. 
 

 
 

Figure 2.1.1. Simplified dynamic model 

 
The simplified dynamic model has 6 degrees of freedom in each story. Degrees of freedom are given as 
follows. 
1) Nodal rotation in the X-Y structural plane; θY 
2) Nodal rotation in the X-Z structural plane; θZ 
3) Nodal rotation due to rotation of floor; ξX 
4) Torsional rotation due to rotation of floor; θX 
5) Horizontal displacement in Y-direction; v 
6) Horizontal displacement in Z-direction; w 
The nodal rotations θY and θZ are shown in Figure 2.1.2 and Figure 2.1.3 respectively. It is assumed that the 
values of θY of all nodal points lying on the floor should be the same. The values of θZ should be also 
obtained by the same way. The nodal rotations ξX are shown in Figure 2.1.4. This is represents nodal 
rotation due to rotation of floor about the origin of the model. The nodal rotation due to rotation of floor is 
the product of ξX and the distance between the origin of the model and the structural plane of the original 
frame. Therefore, the nodal rotation considered torsion in the X-Y structural plane is the sum of the values, 
which is the product of ξX and the distance between the origin of the model and the structural plane of the 
original frame and the values of θY. The nodal rotation considered torsion in the X-Z structural plane is 
also obtained by the same way. Torsional rotation due to rotation of floor θX is shown in Figure 2.1.5. θX is 
defined by the torsional rotation due to rotation of floor about the origin of the model. Horizontal 
displacement due to rotation of floor is the product of θX and the distance from the origin of the model to a 
structural plane of the original frame. Both displacements v and w are shown in Figure 2.1.6. The values 
of v and w are measured as the horizontal displacements due to translation of the floor. The values of all 
nodal points lying in one floor with respect to v and w respectively are the same. Therefore, the horizontal 
displacement considered torsional direction in Y-direction is the sum of the values, which is the product of 
θX and the distance from the origin of the model to a structural plane of the original frame and the values 
of v. The horizontal displacement considered torsional direction in Z-direction is also obtained by the 
same way. 
 

 
 

Figure 2.1.2. Nodal rotation in the X-Y structural plane; θY
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Figure 2.1.3. Nodal rotation in the X-Z structural plane; θZ 

 

 
 

Figure 2.1.4. Nodal rotation due to rotation of floor; ξX 

 
 

 
 

Figure 2.1.5. Torsional rotation due to rotation of floor; θX 
 

 
 

Figure 2.1.6. Horizontal displacement in direction Y and Z; v, w 
 

2.2. Stiffness Matrix of A Beam Element in the Simplified Dynamic Model 
 
The end moment versus rotation relationship of a half-beam of the original frame in X-Y structural plane 
can be denoted by the following equation. 
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M 'Y ,k ,i = B'Y ,k ,i ⋅θ 'Y ,k ,i  , 
    

€ 

B'Y ,k ,i =
6EI 'b,Y ,k ,i

L'k ,i
                                         (2.2.1) 

 
Here,  

€ 

M 'Y ,k ,i is the both end moments of the kth beam in X-Y structural plane in the ith floor;   

€ 

θ 'Y ,k ,i is the 
nodal rotation of the kth beam at the X-Y structural plane in the ith floor; E is Young’s modulus; and
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€ 

I 'b,Y ,k ,i and  

€ 

L'k ,i are the moment of inertia and length of the kth beam in X-Y structural plane in the ith floor. 

  

€ 

θ 'Y ,k ,i versus displacement vector in X-Y structural plane in the ith floor of the simplified dynamic model (

  

€ 

ui{ }) and  

€ 

M 'Y ,k ,i versus stress vector of the end of beam in X-Y structural plane in the ith floor of the 
simplified dynamic model (  

€ 

Pk ,i{ }) can be denoted by the following equation. 
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θ 'Y ,k ,i = T{ }
T ui{ } ,   

€ 

Pk ,i{ } = T{ }M 'Y ,k ,i                                             (2.2.2) 
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T
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T{ } = 1 0 z'k{ }
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Here,   

€ 

z'k is the distance between the origin of the model and the kth beam of the original frame in X-Y 
structural plane in the ith floor. Therefore, stiffness matrix of the kth beam element of the original frame at 
the X-Y structural plane in the ith floor for the simplified dynamic model (  

€ 

KY ,k ,i[ ]) can be denoted by the 
following equation. 
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                                      (2.2.3) 

 
Stiffness matrix of the beam element in X-Y structural plane in the ith floor for the simplified dynamic 
model (  

€ 

KY ,i[ ]) is expressed as sum of   

€ 

KY ,k ,i[ ] . 

 

  

€ 

KY ,i[ ] = Σ KY ,k ,i[ ]                                                              (2.2.4) 
 
Stiffness matrix of the beam element in X-Z structural plane for the simplified dynamic model is derived 
similarly. 
 
2.3. Yield Surface of A Beam Element in The Simplified Dynamic Model 
 
Assuming that the yield surface relating to the center of strength of a beam element in X-Y structural 
plane on the simplified dynamic model is an elliptical shape, its yield surface can be expressed by the 
following equation using stresses relating to the center of strength in X-Y structural plane and each full 
plastic strength. 
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M p,b,Y ,i = ΣM ' p,b,Y ,k ,i  , 
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S p,b,Y ,i = Σ z'k ⋅ M ' p,b,Y ,k ,i =R rb,Y ,i ⋅ M p,b,Y ,i  

 
Here,   

€ 

M ' p,b,Y ,k ,i is full plastic strength of the kth beam in X-Y structural plane in the ith floor;   

€ 

z'k is the 
distance between the center of strength and the kth beam in X-Y structural plane in the ith floor. 
 
The stresses relating to the origin of the model (  

€ 

MY ,i ) and (  

€ 

Si ) can be expressed by the following 
equations using the stresses relating to the center of strength of a beam element (  

€ 

MY ,i ) and (  

€ 

Si ). 
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MY ,i = MY ,i  ,   

€ 

Si = Si + MY ,i ⋅R zb,i                                                (2.3.2) 
 
Here,  

€ 

R zb,i is the distance from the origin of the model and the center of strength of a beam element in X-Y 
structural plane. Thus, using Eqns.2.3.1 and 2.3.2, the yield surface relating to origin of the model can be 
expressed by Eqn.2.3.3. 
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The elasto-plastic stiffness matrix of a beam element in the simplified dynamic model is derived using 
plastic flow theory and Ziegler’s kinematic hardening rule. 
 
2.4. Stiffness Matrix of A Column Element in The Simplified Dynamic Model 
 
Neglecting the axial deformation of columns, the elastic end force vector (  

€ 

P'k ,i{ }) versus the end 
deformation vector (  

€ 

u'k ,i{ }) relationship of a column in the original frame can be denoted by the following 
equation using elastic stiffness matrix (  

€ 

K 'k ,i[ ]). 
 

  

€ 

P'k ,i{ } = K 'k ,i[ ] u'k ,i{ }                                                          (2.4.1) 
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Here, the components of the elastic end force vector of the original frame (  

€ 

P'k ,i{ }) are forces to respond to 
the components of end deformation vector of the original frame (  

€ 

u'k ,i{ }). 
 
The elastic end force vector of the original frame (  

€ 

P'k ,i{ }) versus the elastic the end force vector of the 
simplified dynamic model (  

€ 

Pk ,i{ }) and the end deformation vector of the original frame (  

€ 

u'k ,i{ }) versus the 
end deformation vector of the simplified dynamic model (  

€ 

ui{ }) can be expressed by Eqn.2.4.2. 
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Consequently, using Eqns.2.4.1 and 2.4.2, elastic stiffness matrix in the ith floor of the simplified dynamic 
model can be expressed by Eqn.2.4.3. 
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Ki[ ] = T[ ]∑
T K 'k ,i[ ] T[ ]                                                        (2.4.3) 

 
2.5. Yield Surface of A Column Element in The Simplified Dynamic Model 
 
If it is assumed that the yield surface relating to the center of strength of a column element on the 
simplified dynamic model has a spheroid shape, its yield surface can be expressed by Eqn.2.5.1 deriving 
as well as beam element. 
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The elasto-plastic stiffness matrix of a column element in the simplified dynamic model is also derived 
using plastic flow theory and Ziegler’s kinematic hardening rule. 
 
2.6. Mass Matrix in The Simplified Dynamic Model 
 
The horizontal displacement vector at a certain point (  

€ 

y'k ,  

€ 

z'k ) in the ith floor level (  

€ 

u'k ,i{ }) can be 
expressed by Eqn.2.6.1. 
 

    

€ 

u'k ,i{ } =
v'k ,i
w'k ,i

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=
0 0 0 −z'k 1 0
0 0 0 y'k 0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ui{ }                                       (2.6.1) 

 

  

€ 

ui{ } = θY ,i θZ,i ξ X ,i θ X ,i vi wi{ }
T

 
 
The kinematic energy can be expressed by Eqn.2.6.2 using mass at a certain point (  
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y'k ,  

€ 

z'k ) in the ith floor 
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In consequence, using Eqns.2.6.1 and 2.6.2, the mass matrix in the ith floor of the simplified dynamic 
model (  

€ 

Mi[ ] ) can be expressed by Eqn.2.6.3. 
 

    

€ 

Mi[ ] = m'k ,i∑

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 z'k

2 +y'k
2 −z'k y'k

0 0 0 −z'k 1 0
0 0 0 y'k 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

                                      (2.6.3) 

 
 
3. RESULTS OF EARTHQUAKE RESPONSE ANALYSIS 
 
In this chapter, the accuracy of the modeling is calibrated for two benchmark frames with two kinds of 
earthquake ground motions. 
 
3.1. Benchmark Steel Moment Frames 
 
To calibrate the accuracy of the simplified dynamic model, steel moment frames, which were provided to 
the full-scale shaking table test as shown Figure 3.1.1, were calculated by means of the proposed models. 
The original steel moment frames is non-eccentric frames. Making the frames with eccentricity is 
completed with the fact that some members are replaced by weak members. The weight of each floor is 
the same as well as the original frame. The member that make smaller is marked with a broken line in 
Figure 3.1.1. The size of the member cross section was changed as follows. 
(a) Two columns in the second story were made smaller than the original frame. 
RHS-300x300x9 => RHS-250x250x8  (Column eccentricity frame) 
(b) One beam in the third floor level was made smaller than the original frame. 
H-400x200x8x13 => H-300x150x6.5x9  (Beam eccentricity frame) 
 

 
 

Figure 3.1.1. Benchmark steel moment frame 
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The results are compared with those obtained by finite element method analysis by means of ABAQUS. In 
the analysis, the size of cross section and yield strength of the members were determined according to the 
research in references, the strain hardening coefficient is 0.01, and P-delta effect is considered. As the 
steel moment frames have concrete slab, it was assumed that the floor is rigid in the plane. 
 
3.2. Eigen Value Analysis 
 
Table 3.2.1 summarizes the first natural periods of the frames obtained from the simplified dynamic model 
and ABAQUS. The values of the first natural period of a couple of analysis methods are very close, with 
the difference not greater than 2 per cent for the Y-direction and 3 per cent for the Z-direction. The reason 
is the assumption that all rotations at the joints lying at each floor level are identical. Figure 3.2.1 shows 
naturalmode obtained from the simplified dynamic model and ABAQUS. The vertical axis in this figure is 
story number, and the horizontal axis concerned with translational displacement as shown in Figure 3.2.1 
(a), Figure 3.2.1 (c), Figure 3.2.1 (d) and Figure 3.2.1 (f), is the ratio of the roof displacement of center of 
gravity to the displacement of each story. The horizontal axis concerned with torsional rotation as shown 
in Figure 3.2.1 (b) and Figure 3.2.1 (d), is the torsional rotation when the roof displacement for 
Y-direction of the center of gravity is 10mm. The values of naturalmode obtained by the two analysis 
methods are very close. 
 
Table 3.2.1. Comparison of first natural periods 

Frame Direction ABAQUS Simplified 
dynamic model Ratio 

Y-direction 1.109 1.094 0.986 Column eccentricity 
frame Z-direction 1.011 0.988 0.977 

Y-direction 1.142 1.127 0.987 Beam eccentricity 
frame Z-direction 1.001 0.975 0.974 
 

 
 

Figure 3.2.1. Comparison of naturalmodes between the proposed method and FEM (ABAQUS) 
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3.3. Earthquake Response Analysis 
 
Two kinds of bi-directional ground motions shown in Table 3.3.1 are used for the analyses. For El Centro 
(1940), the maximum acceleration of ground motion was adjusted in order that its value in the north-south 
maximum velocity of ground motion takes 0.5 m/s. For JMA Kobe (1995), measured ground motion is 
used directly. The acceleration of ground motion in north-south direction (larger input energy) is made for 
the Y-direction of the analytical frame, which has eccentricity. The acceleration of ground motion in 
east-west direction (smaller input energy) is made for the Z-direction of the analytical frame. Rayleigh 
damping constant of 1 per cent for the first modes of Y-direction and Z-direction was adopted in the 
analysis. The step time of numerical integration of seismic response analyses is 0.002 s. The duration of 
the analyses is 15.0 s. 
 
Table 3.3.1. Input ground motions 
Ground motion name Direction Input direction Maximum acceleration (m/s2) Duration time (s) 

North-south Y-direction 5.11 15.0 El Centro, 1940 East-west Z-direction 3.14 15.0 
North-south Y-direction 8.21 15.0 JMA Kobe, 1995 East-west Z-direction 6.19 15.0 

 
Figure 3.3.1 show the distribution of the maximum story drift angles (Rmax) of column eccentricity frame 
and beam eccentricity frame. The distributions of the maximum inter-story drift angles of the two analysis 
methods are almost the same as shown in Figure 3.3.1. However, there is slight difference between two 
analysis methods. That reason is assumption that all rotations at joints lying at each floor level are 
identical. 
 

 
 

Figure 3.3.1. Distribution of maximum story drift angles (Rmax) 
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Figure 3.3.2 show the distribution of maximum story torsional angles (Δθmax) of column eccentricity frame 
and beam eccentricity frame. Δθmax is defined as the subtraction the twist rotation angle in the ith story 
from the torsional rotation angle in the story under the ith. The distribution of maximum story torsional 
angles of the two analysis methods is approximately equal in Figure 3.3.2. 
 

 
 

Figure 3.3.2. Distribution of maximum story torsional angles (Δθmax) 

 
 
4. CONCLUSIONS 
 
In this paper, a simplified dynamic model useful for the simulation of earthquake response of 
3-dimensional multi-story steel moment frames with eccentricity was proposed. The model makes the 
number of the degrees of freedom in an objective frame rather less than that of a conventional model in 
use of multi-purpose structural analysis program such as finite element analysis programs. The accuracy 
of the simplified dynamic model was calibrated by comparing the results obtained from this model with 
those obtained from finite element method analysis using ABAQUS. The errors associated with the model 
are negligible in light of the variability of responses by means of two kinds of earthquake ground motions 
and a couple of benchmark frames. 
 
With these capacities, the simplified dynamic model is effective in conducting extensive numerical 
analyses needed for the identification and characterization of primary structural parameters that influence 
the earthquake responses of steel moment frames. 
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