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SUMMARY:

Reliable seismic vulnerability analysis is genlgrélased on time-domain simulations of structuesponses.
The seismic load is then modelled by a stochasticgss, representing seismic ground motion. Farghipose,
the analyst can use recorded accelerograms or wittk synthetically generated ones. When performing
advanced probabilistic analyses, synthetic accgfaros are often used since available strong maléta is not
sufficient. It is then necessary to have at oupaksl methods that allow for generating synthataeierograms
that realistically characterize earthquake grourdwtion. In particular, they have to accurately rejuce the
natural variability of ground motion parametersatetl to the chosen site specific scenario. We ptesmethod
for generating two-dimensional synthetic ground iomtreproducing variability in ground motion paraers
and response spectra as observed for natural emgelens. The proposed procedure uses Karhunen-Loéve
decomposition and a general (non-Gaussian) stachastel in order to simulate ground motion timetbiies
accounting for the space-time correlation structfrthe two horizontal components This contributfmesents
an extension of an earlier work by the authorsessnsic ground motion models.
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1. INTRODUCTION

This paper addresses the modelling and the siroolafi correlated horizontal seismic ground motion
time histories. In the framework of performancedshearthquake engineering, time-domain seismic
and probabilistic analyzes have to be performee ditputs of these analyses are quantities such as
safety margins and fragility curves. It is acknadged, that the accurate modelling of seismic Izl i
crucial point in order to determine “best-estimaggictural responses.

It has to be stressed that seismic ground motibibég non stationary behaviour as well in frequenc
content and as in amplitude (standard deviatiamie-dependant). Thus, seismic ground motion has
to be modelled by a non stationary stochastic @®ce

Most of the models for simulating artificial grountbtion time histories are based on representations
of a stochastic process by power spectral dengitiegjuivalent time domain formulations (Pousse &
al 2006, Rezaeian & Der Kiureghian 2010). This éemthe analyst to generate as many time histories
as necessary for the probabilistic analysis. Onother hand, one can use natural accelerograms in
order to avoid approximations and discrepancies tdupredefined models. The drawback of this
rationale is the lack of sufficient natural accefgams for performing probabilistic analysis. In a
previous paper the authors (Zentner & Poirion, 20ki@ve proposed a new method based on
Karhunen-Loéve expansion, that allows for the émient of a natural ground motion database. The
idea behind this approach is to use recorded grouwtibn data coming from the constantly growing
international strong motion databases in orderedfan appropriate non Gaussian probabilistic
model. The model thus allows for the enrichmerd dhta base in view of probabilistic analysis where
repeated structural analyses have to be perforifes paper presents an extension of the earliek wor
by the authors to vector valued seismic ground anatnodels. We develop an empirical model, based
on strong motion databases, for simulating of ¢atee horizontal ground motion components.
Penzien & Watabe (1975) argue that principal afesacthquakes are usually directed towards the



general direction of the earthquake source and dbeesponding perpendicular direction. In
consequence, Rezaeian & Der Kiureghian (2010) m@po consider only uncorrelated components
parallel and orthogonal to the source and to olmtiier configurations by rotation.

However, when studying a particular building orusttial plant in moderate seismic zones, then its
exact orientation with respect to the source isegaly not well known. In consequence, it can be
useful to have at our disposal statistical modetoanting for the statistical distribution of cdation
between the horizontal components.

2. SIMULATION OF NON GAUSSIAN STOCHASTIC PROCESSES

The simulation of non Gaussian non stationary ststity processes is not an easy task. Some authors
propose to use memoryless transformations of Gaugsocesses (e.g Shields et al. 2011) but then the
functional relationship linking the underlying Gaish power spectral density function with the
equivalent non Gaussian expression has to be detmmAnother more general approach is the
characterization of the non Gaussian process bgomelation function and using Karhunen-Loéeve
expansion. However, in the general, non Gaussease,dhe distributions of the random variables of
the K.-L. expansion are not known. In what follows present a ground motion simulation method
based on Karhunen-Loéve expansion where the embdtistributions are estimated from recorded
ground motion. We furthermore discuss some thaaproperties of the resulting time histories.

2.1. Some elements on Karhunen-Loéve expansion

Let D be a compact subset & and X(t) =(X,(1),.., X,(9), tJ O, a second-order, zero mean

stochastic process defined on a probability sg@a, P) with values inR™. We will assume that
X (t) is almost surely (a.s.) continuous. Sifgeis compact, the auto-correlation function

R (t 1) = E(X() X(1)"), (2.1)

defines a continuous self-adjoint Hilbert-Schmidiear operatorQ of # = L?(D,R™) (Guikman
and Skorokhod,1979):

Q)W) = R(tO)p(t)dt g €71, (22)

which has a countable number of eigenvalded,...— 0. The associated eigenfunctions are the
solutions of the integral equation

Jo Re(t )P(t) dt = Ag(D), (23)
and constitute a Hilbertian bagig,} ., of #:
<oy = [ <. (0.8,(0) >dx=2, 24)

in which <,> denotes the inner product ®". Then vector-valued random proceXqt) has the
following expansion ii?(B,R™) :

OtOD, X (1) = Y. 2, &,8, (1), (2.5)

a1

in which &,¢,,...¢,, ... are uncorrelated real valued random variablesngbye



=%L< X (1), 4, (t) > dt (2.6)

2.2. ldentification of the K.-L. expansion terms

We are dealing in this study with 2 dimensionalugid motion fields: X (t) = (x(t), y())" . Starting
with a database containing N accelerograms acaptdiigiven common feature (a given site specific

scenario) yields{ X (t);i=1,...,r}, XO(t) =(X( D), YD)  eRr™ 1=1,..,N

The first step to the construction of the K-L exgian model is to estimate the empirical
autocorrelation matrix. The autocorrelation funetaf a given time history X reads:

R(t. Z X)XV (1)
(2.7)
Using the vectorsX @ =(x(t),... X" t,)), YO =(y"(t),....y" ) andZz® = (X, YY)
we can construct directly an estimator of the aat@tation matrix of the given accelerograms:

R, Nii "’z“’T:[;*X ;‘A‘:JDMatR(Zn,Z]), (2.8)

We can check that we have taken into account theelation between the 2 components of the
accelerogram. Solving the discretized eigenvalugblpm (2.3) yields2n eigenvaluesA, and

d R, for a,i=12n .

The second step is to construct sampf[ééof the random variables appearing in the Karhuneévke
expression. Expression (6) gives an explicit retati

fg):%§<X"’(q),¢a(i)>m; I=LN ;a=12a (2.9)
oy Q=L

where At is the sampling time step.

The last step of the procedure is to construcethpirical estimate of the characteristic distribntdf
each random variablé, :

F,(t) =Nii I{& <t (2.10)

Let W_the 2 dimensional discrete function defined Wy, (i) = (P, (), P, (" +i)) ;i =1,..n . At
this point, if we consider for simplification thdte random variables are independent, although the
construction off £} , has implicitly taken into account this dependeribg, construction is finished.

One is able to generate samples of each scalaomawmdriableé, appearing in the Karhunen-Loéve



expansion of X . Then, one is able to construct sample paths @fnitn stationary non Gaussian
process using the truncated expression:

X() = (1), YD) =254, &, W, () i=1..n (2.11)

2.3. Properties

It can be shown that the simulated time historiesture zero residual acceleration, velocity and
displacement if the recorded accelerograms, cogdain database used for the construction, do
(Zentner & Poirion 2011). Baseline correction atigeo post-processing techniques should be applied
to the original data if it does not feature theuieed or desired properties. Further studies of the
statistical properties of natural and simulatecdetimstories are investigated in section 3.

3. APPLICATION TO THE SIMULATION OF CORRELATED HORI ZONTAL GROUND
MOTION FIELDS

The construction of a pertinent database repreggtitie seismic scenario and containing a sufficient
number of accelerograms is a crucial point forghecedure. The evaluation of the cross-correlation
matrix requires an important amount of data, intipalar more than the evaluation of the
autocorrelation alone. The use of too few accelarog can lead to inaccuracies. For the purpose of
testing the method, we consider a subset of efemts NGA database corresponding to magnitudes
5<M<6, focal distanc®<D<20 and all soil types witlys>200m/s This leads to a reduced database
containing 220 pairs of accelerograms. Further weelative to the choice of a pertinent database
featuring the required properties, is in progress.

The median absolute correlation coefficient durgtigpng motion phase was calculated to be 0.15.
Some examples of pairs of accelerograms and tloeielation coefficient are shown on figure 3.1.
This figure also displays the empirical distributithistogram) of the absolute value of the corietat
coefficients determined for the strong motion phdsa the K.-L. expansion model, we retain 70
eigenmodes which corresponds to 99% of the togiggn The time dependent variarRg, (¢, t) and

the covariance®yy (t,t) are shown on figures 3.2 and 3.3.We show the suoleained with the
initial data, the resulting approximation with tKe-L. expansion as well as the empirical values
obtained for 1000 simulated pairs (x,y) of grounakion time histories. Figure 3.4 displays examples
of pairs of simulated accelerograms and their ¢atioen coefficient. The histogram of the absolute
value of the correlation coefficient is also shown.
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Figure 3.1 Examples of pairs of horizontal (x,y) accelerogsefnom NGA and distribution of absolute value of
correlation coefficient
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Figure 3.2 Time dependent variance: model (K.-L.) and fromwdated time histories
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Figure 3.3Time dependent covariance: data, model (K.-L.) famch simulated time histories
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Figure 3.4 Examples of pairs of horizontal (x,y) simulatedelerograms and distribution of absolute value of
correlation coefficient.

4. CONCLUSIONS

The use of recorded ground motion for performareseld seismic analysis is becoming more and
more popular since it avoids approximations indubgdusing predefined ground motion models.
Concurrently, data available through the intermaticstrong motion databases is constantly growing.
The number of accelerograms available for a giveenario may, however, not be sufficient for
extensive probabilistic analysis. This is why tlwhars have proposed a method, based on Karhunen-
Loeve expansion, which can be used for the enrichmieatground motion database. This method is
extended in this paper for the generation of haizb2D ground motion vector processes. The
evaluation of the cross-correlation matrix require®re data than the autocorrelation. The
construction of a pertinent database representiegseismic scenario and containing a sufficient



number of accelerograms is thus a crucial pointtfersuccessful use of the procedure. Further work
relative to the choice of such a database, isagress.
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