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SUMMARY:   
 Reliable seismic vulnerability analysis is generally based on time-domain simulations of structural responses. 
The seismic load is then modelled by a stochastic process, representing seismic ground motion. For this purpose, 
the analyst can use recorded accelerograms or work with synthetically generated ones. When performing 
advanced probabilistic analyses, synthetic accelerograms are often used since available strong motion data is not 
sufficient. It is then necessary to have at our disposal methods that allow for generating synthetic accelerograms 
that realistically characterize earthquake ground motion. In particular, they have to accurately reproduce the 
natural variability of ground motion parameters related to the chosen site specific scenario. We present a method 
for generating two-dimensional synthetic ground motion reproducing variability in ground motion parameters 
and response spectra as observed for natural accelerograms. The proposed procedure uses Karhunen-Loève 
decomposition and a general (non-Gaussian) stochastic model in order to simulate ground motion time histories 
accounting for the space-time correlation structure of the two horizontal components This contribution presents 
an extension of an earlier work by the authors on seismic ground motion models. 
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1. INTRODUCTION 
  
This paper addresses the modelling and the simulation of correlated horizontal seismic ground motion 
time histories. In the framework of performance-based earthquake engineering, time-domain seismic 
and probabilistic analyzes have to be performed. The outputs of these analyses are quantities such as 
safety margins and fragility curves. It is acknowledged, that the accurate modelling of seismic load is a 
crucial point in order to determine “best-estimate” structural responses.   
It has to be stressed that seismic ground motion exhibits non stationary behaviour as well in frequency 
content and as in amplitude (standard deviation is time-dependant). Thus, seismic ground motion has 
to be modelled by a non stationary stochastic process.  
Most of the models for simulating artificial ground motion time histories are based on representations 
of a stochastic process by power spectral densities or equivalent time domain formulations (Pousse & 
al 2006, Rezaeian & Der Kiureghian 2010). This enables the analyst to generate as many time histories 
as necessary for the probabilistic analysis. On the other hand, one can use natural accelerograms in 
order to avoid approximations and discrepancies due to predefined models. The drawback of this 
rationale is the lack of sufficient natural accelerograms for performing probabilistic analysis. In a 
previous paper the authors (Zentner & Poirion, 2012) have proposed a new method based on 
Karhunen-Loève expansion, that allows for the enrichment of a natural ground motion database. The 
idea behind this approach is to use recorded ground motion data coming from the constantly growing 
international strong motion databases in order to feed an appropriate non Gaussian probabilistic 
model. The model thus allows for the enrichment of a data base in view of probabilistic analysis where 
repeated structural analyses have to be performed. This paper presents an extension of the earlier work 
by the authors to vector valued seismic ground motion models. We develop an empirical model, based 
on strong motion databases, for simulating of correlated horizontal ground motion components.  
Penzien & Watabe (1975) argue that principal axes of earthquakes are usually directed towards the 



general direction of the earthquake source and the corresponding perpendicular direction. In 
consequence, Rezaeian & Der Kiureghian (2010) propose to consider only uncorrelated components 
parallel and orthogonal to the source and to obtain other configurations by rotation.  
However, when studying a particular building or industrial plant in moderate seismic zones, then its 
exact orientation with respect to the source is generally not well known. In consequence, it can be 
useful to have at our disposal statistical models accounting for the statistical distribution of correlation 
between the horizontal components. 
 
 
2. SIMULATION OF NON GAUSSIAN STOCHASTIC PROCESSES 
 
The simulation of non Gaussian non stationary stochastic processes is not an easy task. Some authors 
propose to use memoryless transformations of Gaussian processes (e.g Shields et al. 2011) but then the 
functional relationship linking the underlying Gaussian power spectral density function with the 
equivalent non Gaussian expression has to be determined. Another more general approach is the 
characterization of the non Gaussian process by its correlation function and using Karhunen-Loève 
expansion. However, in the general, non Gaussian, case, the distributions of the random variables of 
the K.-L. expansion are not known. In what follows, we present a ground motion simulation method 
based on Karhunen-Loève expansion where the empirical distributions are estimated from recorded 
ground motion. We furthermore discuss some theoretical properties of the resulting time histories. 
  
2.1. Some elements on Karhunen-Loève expansion 

 Let D  be a compact subset of ℛ and 1( ) ( ( ) ( ))dX t X t … X t t D= , , , ∈ , a second-order, zero mean 

stochastic process defined on a probability space (�, ℬ, �) with values in ℛ�. We will assume that 
( )X t  is almost surely (a.s.) continuous. Since D  is compact, the auto-correlation function  

  

 ( ) ( ( ) ( ) )T
XR t t X t X t′ ′, = E , (2.1) 

 

defines a continuous self-adjoint Hilbert-Schmidt linear operator Q  of  ℋ = ��(
,ℛ�) (Guikman 
and Skorokhod,1979):  

 ( )( ) ( ) ( )XD
Q t R t t t dt Hϕ ϕ ϕ′ ′ ′= , ; ∈∫ � ∈ ℋ, (2.2) 

 

which has a countable number of eigenvalues 1, 2 0…λ λ → . The associated eigenfunctions are the 

solutions of the integral equation  

 ( ) ( ) ( )XD
R t t t dt tϕ λϕ′ ′ ′, =∫ , (2.3) 

 

and constitute a Hilbertian basis 1{ }α αϕ ≥  of  ℋ:  
 
  (2.4) 
 
 
in which <, >  denotes the inner product in ℛ�. Then vector-valued random process ( )X t  has the 

following expansion in ��(�,ℛ�) : 
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in which 1 2 … …αξ ξ ξ, , , ,  are uncorrelated real valued random variables given by  
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2.2. Identification of the K.-L. expansion terms 

We are dealing in this study with 2 dimensional ground motion fields: ( ) ( ( ), ( ))TX t x t y t= . Starting 
with a database containing N accelerograms according to given common feature (a given site specific 
scenario) yields: ( ) ( ) ( ) ( ) 2{ ( ) 1 }, ( ) ( ( ), ( )) , 1,...,l l l l T

i i i iX t i n X t x t y t l; = ,..., = ∈ = ∈ ℛ�, � = 1,… ,�.  

The first step to the construction of the K-L expansion model is to estimate the empirical 
autocorrelation matrix. The autocorrelation function of a given time history X reads:  
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Using  the vectors ( ) ( ) ( )
1( ( ),..., ( ))l l l

nx t x t=X , ( ) ( ) ( )
1( ( ),..., ( ))Y l l l

ny t y t=  and ( ) ( ) ( )( , )Z X  Yl l l T= ,  

we can construct directly an estimator of the autocorrelation matrix of the given accelerograms: 
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We can check that we have taken into account the correlation between the 2 components of the 

accelerogram. Solving the discretized eigenvalue problem (2.3) yields 2n  eigenvalues αλ  and  

Φ�ϵℛ
��, for 1 2i nα , = ,  .  

The second step is to construct samples ( )l
αξ of the random variables appearing in the Karhunen-Loève 

expression. Expression (6) gives an explicit relation:  
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where t∆  is the sampling time step.  

The last step of the procedure is to construct the empirical estimate of the characteristic distribution of 

each random variable αξ :  

( )

1
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l

F t I tα αξ
=

= ≤∑
N

N
  (2.10) 

 

Let αΨ the 2 dimensional discrete function defined by ( ) ( ( ), ( )) ; 1,...,Ti i n i i nα α αΨ = Φ Φ + = . At 

this point, if we consider for simplification that the random variables are independent, although the 

construction of { }α αξ  has implicitly taken into account this dependency, the construction is finished. 

One is able to generate samples of each scalar random variable αξ  appearing in the Karhunen-Loève 



expansion of X . Then, one is able to construct sample paths of the non stationary non Gaussian 
process using the truncated expression: 
 

1( ) ( ( ), ( )) ( ) ; 1,...,T
i i i

MX t x t y t i i nα α αξ== = Σ Ψ =   (2.11) 
 
 

2.3. Properties  

It can be shown that the simulated time histories feature zero residual acceleration, velocity and 
displacement if the recorded accelerograms, contained in database used for the construction, do 
(Zentner & Poirion 2011). Baseline correction and other post-processing techniques should be applied 
to the original data if it does not feature the required or desired properties. Further studies of the 
statistical properties of natural and simulated time histories are investigated in section 3. 
 
 
 
3. APPLICATION TO THE SIMULATION OF CORRELATED HORI ZONTAL GROUND 
MOTION FIELDS 
 

The construction of a pertinent database representing the seismic scenario and containing a sufficient 
number of accelerograms is a crucial point for the procedure. The evaluation of the cross-correlation 
matrix requires an important amount of data, in particular more than the evaluation of the 
autocorrelation alone. The use of too few accelerograms can lead to inaccuracies.  For the purpose of 
testing the method, we consider a subset of events from NGA database corresponding to magnitudes 
5<M<6, focal distance 0<D<20 and all soil types with Vs>200m/s. This leads to a reduced database 
containing 220 pairs of accelerograms. Further work, relative to the choice of a pertinent database 
featuring the required properties, is in progress. 
The median absolute correlation coefficient during strong motion phase was calculated to be 0.15. 
Some examples of pairs of accelerograms and their correlation coefficient are shown on figure 3.1. 
This figure also displays the empirical distribution (histogram) of the absolute value of the correlation 
coefficients determined for the strong motion phase. For the K.-L. expansion model, we retain 70 
eigenmodes which corresponds to 99% of the total energy. The time dependent variance ���(�, �) and 
the covariances ���(�, �) are shown on figures 3.2 and 3.3.We show the curves obtained with the 
initial data, the resulting approximation with the K.-L. expansion as well as the empirical values 
obtained for 1000 simulated pairs (x,y) of ground motion time histories. Figure 3.4 displays examples 
of pairs of simulated accelerograms and their correlation coefficient. The histogram of the absolute 
value of the correlation coefficient is also shown. 



 
 

Figure 3.1 Examples of pairs of horizontal (x,y) accelerograms from NGA and distribution of absolute value of 
correlation coefficient 

 
 

 
 

Figure 3.2 Time dependent variance: model (K.-L.) and from simulated time histories 
 
 
 



 
 

Figure 3.3 Time dependent covariance: data, model (K.-L.) and from simulated time histories 
 

 

 
 

Figure 3.4 Examples of pairs of horizontal (x,y) simulated accelerograms and distribution of absolute value of 
correlation coefficient. 

 
 
 
4. CONCLUSIONS 
 
The use of recorded ground motion for performance-based seismic analysis is becoming more and 
more popular since it avoids approximations induced by using predefined ground motion models. 
Concurrently, data available through the international strong motion databases is constantly growing. 
The number of accelerograms available for a given scenario may, however, not be sufficient for 
extensive probabilistic analysis. This is why the authors have proposed a method, based on Karhunen-
Loève expansion, which can be used for the enrichment of a ground motion database. This method is 
extended in this paper for the generation of horizontal 2D ground motion vector processes. The 
evaluation of the cross-correlation matrix requires more data than the autocorrelation. The 
construction of a pertinent database representing the seismic scenario and containing a sufficient 



number of accelerograms is thus a crucial point for the successful use of the  procedure. Further work, 
relative to the choice of such a database, is in progress. 
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