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SUMMARY: 
Dependence of maximum linear and non-linear drifts in multi-story buildings excited by fault-parallel 
(permanent) displacement and fault-normal pulses is investigated. A system of nonlinear equations of motion of 
the model is solved by the fourth-order Runge-Kutta method. For linear system response, the differential-
ground-motion is important only for the first story, and, depending on the time delay and earthquake magnitude, 
it can be 2 to 3 times larger than the drift computed for synchronous horizontal ground motion. The drift of the 
top stories is not amplified and is relatively insensitive to the differential motion effects. Because of the large 
initial velocity present in the ground motion near earthquake faults the story drifts quickly exceed the typical 
design levels and fault-normal pulses produce more intense drift demands relative to those for fault-parallel 
displacements. For nonlinear systems, the effect of vertical and rocking differential ground motions contribute 
more to top-story drifts. In the nonlinear response range, simultaneous action of horizontal, vertical, and rocking 
differential ground motions can amplify the drifts by more than 2 and 3 times relative to the drifts computed in 
common analyses, which consider only uniform horizontal ground motion. 

 
Keywords:  Near-fault ground motion, earthquake response, differential strong ground motion.  
 
 
 
1. INTRODUCTION 
 
In the near field of large earthquakes, and especially close to surface faults, the strong ground motion 
can be dominated by the permanent displacements (typically parallel to the fault surface) and by large 
pulses (often perpendicular to the fault). Traces of these large displacements and pulses may not 
always be obvious in the processed records of the recorded motions because of band-pass filtering, 
designed to eliminate digitisation and processing noise (Trifunac and Lee 1979).  
 
When the distances between the multiple support points are large (e.g., bridges, dams, tunnels, and 
long buildings), the effects of differential motions become important and should be considered in 
dynamic analyses. Spatial and temporal representations of strong earthquake motion required for such 
analyses have been investigated in numerous papers (Zerva 2009). Their consequences have been 
studied for the response of beams, bridges, simple models of three-dimensional structures, long 
buildings (Todorovska and Trifunac 1989, 1990a,b), and dams (Kojić and Trifunac 1988, 1991a,b). 
Simple analyses of two-dimensional models of long buildings suggest that when 410a λ −< , where 
a  is wave amplitude and λ  is the corresponding wave length, the wave propagation effects on the 
response of simple structures can be disregarded. For shorter waves, but still longer than the 
characteristic dimensions of the structure, Trifunac and Todorovska (1997) and Trifunac and Gičev 
(2006) showed that the common response spectrum method for synchronous ground motion can be 
extended to be applicable for earthquake response analyses of extended structures experiencing 
differential in-plane and out-of-plane ground motion. Jalali et al. (2007) and Jalali and Trifunac (2007, 
2008, 2009) found strong dependence of the R-factor on the magnitude of an earthquake for the 
response of a one-story system to in-plane motions close to an earthquake source.  



 

The purpose of this study is to investigate the variation of maximum linear and nonlinear drift in the 
three-story buildings subjected to fault-normal pulses and fault-parallel displacements.  
 
2.  DYNAMIC MODEL 
 
As can be seen from Fig. 1, the model we consider is a three-story building consisting of three rigid 
floors with masses im , polar mass moments of inertia iI , and length L, supported by six rigid mass-
less columns connected at two ends by circular springs. The stiffness of the springs is assumed to be 
bilinear, as shown in Fig. 2. The mass-less columns are also connected at two ends by circular 
dashpots providing a fraction of critical damping. Rotation of the columns is assumed not to be small, 
which leads us to consider the geometric nonlinearity. The masses are acted upon by the acceleration 
of gravity, g, and are excited by differential ground motions at two piers. The deformed shape of the 
structural model is shown in Fig. 3. We define the parameters of the model as follows: 

i
kφ =  Initial rotational stiffness of column 
springs of i th− story; 

i
cφ =  Linear rotational damping coefficient of 
columns of i th− story; 

im =   Mass of rigid beam of i th− story 
L= Length of rigid beam; 

21
12i iI m L= =  Polar moment of inertia of 

rigid beam of i th− story; 
 ih = Height of i th−  story; 

1iψ  = Relative rocking angle of i th−  column 
of the first story; 
 1 1ii g iφ θ ψ= + = Absolute rocking angle of 
i th−  column of the first story; 

jiφ  = Relative rocking angle of i th−  column 

of j th−  story; 
 , ,

i i ig g gu v θ = The free-field horizontal, 
vertical, and rocking motions of ground 
surface at the base of i th−  column ( 1,2)i = ; 
and 

, ,
i i iG G GU V θ = Absolute horizontal, vertical, 

and rotational motions of the centre of gravity 
of i th− rigid beam. 
 
Because of the assumed rigidity of the 
columns and beams, we can write the 
following relations between the displacements 
of beams and columns: 

Absolute Horizontal and Vertical 
Displacements of i th− Beam Ends 

Fig. 1. Model of a 3-story structure with rigid beams, 
mass-less columns, rotational springs and dampers, 
subjected to differential horizontal, vertical, and 
rocking components of ground motion. 
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By combining (1), and (2), we find the absolute motions of i th−  rigid beam as follows: 

Fig. 2. Bilinear rotational stiffness 
models (top), and elasto-plastic 
system and its corresponding 
linear system (bottom). 

Fig. 3. Deformed shape of the model subjected to 
differential motions at the base of its columns. 
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Next, we write the equilibrium equations. For the third story those are 

33 33 340 0X GF m U F F= ⇒ − + + =∑   ;                                  (4a) 

33 31 32 30 0Y GF m V F F W= ⇒ − + + − =∑    ;                          (4b) 

3 3 3 331 32 3 31 32 33 340 cos ( ) sin ( ) 0
2 2G G G G
L LM M M I F F F Fθ θ θ= ⇒ + − + − + − =∑  ;          (4c)                                                                                     

( ) ( )2 231 31 31 3 31 33 3 310 sin cos 0G GM M M F h F hθ φ θ φ′= ⇒− − + + − + =∑   ;          (4d)     

( ) ( )2 232 32 32 3 32 34 3 320 sin cos 0G GM M M F h F hθ φ θ φ′= ⇒− − + + − + =∑   ;          (4e)                                             

The equilibrium equations of i th−  story (i=1,2) are ; 

( 1)3 ( 1)4 3 40 0
iX i G i i i iF mU F F F F+ += ⇒ − − − + + =∑   ;          (5a)                                                                                    

( 1)1 ( 1)2 1 20 0
iY i G i i i i iF mV F F F F W+ += ⇒− − − + + − =∑   ;          (5b) 
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( ) ( )1 11 1 1 1 3 10 sin cos 0
i ii i i i G i i i G iM M M F h F hθ φ θ φ
− −

′= ⇒− − + + − + =∑   ;           (5d) 

( ) ( )1 12 2 2 2 4 20 sin cos 0
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′= ⇒− − + + − + =∑   .           (5e) 

 i iW m g= , is the weight of i th− story. The moments in rotational springs are determined from 
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where ( )F φ  is a nonlinear function of the type described in Fig. 2. By combining the above equations 
we obtain the independent equations of motion of the system as follows: 

1 1 1 2 2

2 2 2 3 3

3 3 3

* * * * *
1 1 1 1 1 2 1 1 2 1
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where * * * *, , , ,i i i iA B C G and *
iI  depend to ijφ  and input ground motion. The system has six degrees of 

freedom—three independent and three dependent. Because of the assumed rigidity of three beams, 
their lengths are constant. Therefore, we can write the following relations for three beams: 
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Using (2), (3), (6), and (8) we can write (7) in terms of, 11φ , 21φ , and 31φ  as follows: 
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where ijz  is nonlinear function of ijφ  and input ground motion. The system of nonlinear equations of 

motion of the model in Fig. 2, which is described by (9), can be solved by numerical methods. We 
used the fourth-order Runge-Kutta method because of its self-
starting feature and the long-range stability.  

Floor masses and story stiffness vary linearly from top to 
bottom as follows. Their relative values are so proportioned 
that the fundamental period of vibration of the building is 
0.1N, N being the number of stories in the building (Gupta 
and Trifunac 1989). 
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We suppose that the floor damping coefficients vary linearly 
from top to bottom as follows: 
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Fig. 4. Fault-parallel, ( )Nd t , 

and fault-normal, ( )Fd t , 
displacements with magnitude 
M=7. 



3. NEAR-FAULT GROUND MOTION  

We describe the ground motion by Fd  (fault-normal pulse) and Nd  (fault-parallel permanent 

displacement) and select their amplitudes and duration consistent with the variables which describe 
near fault motions. Fig. 4, shows a fault schematically with these two characteristic motions, Nd , and 

Fd , which describe monotonic growth of the displacement toward the permanent static offset, and a 

pulse, here assumed to be perpendicular to the fault and associated with failure of a nearby asperity or 
passage of dislocation under or past the observation point (Haskell 1969). Further discussion and 
motivation for selecting these simple strong motion displacement functions are described in our 
previous work ( Jalali and Trifunac 2007, 2008, 2009). 

An important physical characteristic of Nd  and Fd  is the large initial velocity associated with the 

onset of these motions. It is proportional to the stress drop on the fault and even in the presence of 
nonlinear site response that can be in the range of hundreds of cm/s (Trifunac 2008, 2009). 

For the fault-normal pulse, we chose (Fig. 4 -center) 

( ) Ft
F Fd t A te α−=  ,                                                      (12)            

where the values of FA , and Fα , versus earthquake magnitudes, are given in Trifunac (1993, 2009). 

For the fault-parallel permanent displacement, we consider (Fig. 4 -bottom) 

( ) (1 )
2

N

t
N

N
Ad t e τ

−

= −   ,                                            (13) 

where the values of NA , and Nτ , versus earthquake magnitudes, are given in Trifunac (2009). 

The amplitudes of Fd  and Nd  have been studied in numerous regression analyses of recorded peak 

displacements at various distances from the fault and in terms of the observed surface expressions of 
fault slip. The latter are traditionally presented as average dislocation amplitudes, u , and are related to 

Nd , as 2 Nu d= (see Fig. 4 -top).  

4. STRUCTURAL RESPONSE 
 
The relative motion of individual column foundations and of the entire foundation system will depend 
on the type of foundation and stiffness of the connecting beams and slabs, the characteristics of the 
soil surrounding the foundation, the type of incident waves, and the direction of wave arrival (Trifunac 
1997; Trifunac et al. 1999). At the base of each column, the motion has six degrees of freedom, which 
will depend on the foundation-soil interaction and on the degree to which the nonlinear deformations 
occur in the structure and in the soil. In this paper, we consider only simultaneous action of horizontal, 
vertical, and rocking components of near-fault ground motion at the base of the columns 
( , ,

i i ig g gu v θ ), for earthquake with M = 5 to 7, but we disregard the effects of foundation-soil 

interaction. We assume that the building is near a fault and that the longitudinal axis of the building 
(X-axis) coincides with the radial direction (r-axis) of the propagation of waves from the earthquake 
source so that the absolute displacements of the bases of columns are different only because of the 
wave passage. We assume that the ground motion can be described approximately by linear wave 



theory. By considering the wave propagation from left to right in Fig. 1, we assume that the excitations 
at the bases of two columns have the same amplitude, but different phase. The phase difference (or 
time delay τ ) between the two ground motions depends on the distance between columns and the 
horizontal phase velocity of the incident waves (Trifunac and Todorovska 1997). As is seen from 
Fig. 1, the system is excited by , , , 1, 2

i i ig g gu v iθ =  , at the two bases, so that 

2 1 2 1 2 1
( ) ( ), ( ) ( ), ( ) ( ),g g g g g g xu t u t v t v t t t L Cτ τ θ θ τ τ= − = − = − =  ,         (14) 

where xC  is the horizontal phase velocity of incident waves. In this study, for simplicity, we assumed 

that ( ) ( )
i ig gv t u t= ± , considering the upward and downward ground motions, and the functional form 

of ( )
igu t  is defined by (12) and (13) for the fault-normal pulse and fault-parallel displacements, 

respectively. In Figs. 5 through 8 we illustrate the results for ( ) ( )
i ig gv t u t= + , and in Figs. 9 and 10 

for ( ) ( )
i ig gv t u t= − . The rocking component of the ground motion is approximated by (Trifunac 

1982; Lee and Trifunac 1987) ( ) ( 1/ ) ( )g x gt C v tθ = − ,  where ( )gv t  is the vertical velocity of ground  

 

Fig.  5. Maximum linear drift along the height of the building, excited by fault-normal pulse, for horizontal only 
(left) and horizontal, vertical and rocking strong motion (right), and time lags from 0 to 0.10 s. 

 

motion. For body waves, xC  will depend on the shear wave velocity in the half space ( β ) and the 

incident angle (γ ). For surface waves, xC  will depend on the dispersion characteristics of the medium 

( ( )xC ω  will be different for each of the surface wave modes). For plane waves, the value of xC  

varies between β  and infinity ( )xCβ < < ∞ . In this paper, the horizontal phase velocity will be 

assumed to vary between 100 m/s and infinity (100 xC< < ∞ ), and the typical value of L is in the 

range from 10 to 100 m. For illustrations in this work, it is assumed that L = 10 m, and for different 
phase velocities different time delays are selected ( 0.0,.01,.03,.05,.1τ = ). The height of each story is 
h1 = h2 = h3 = 3.5 m, and the first period of the system is assumed to be T1 = 0.3 s. The damping ratio 
of the first mode is taken to be 1 0.02ζ = . In nonlinear analyses, the material is assumed to be elasto-

plastic, and the yielding limit of rotational springs at all stories is supposed to be yφ = 0.01. 



 

Fig. 6. Maximum nonlinear drift along the height of the building, excited by fault-normal pulse, for horizontal 
only (left) and horizontal, vertical and rocking strong motion (right), and time lags from 0 to 0.10 s. 

 
5. RESULTS AND CONCLUSIONS 
 
Figures 5 through 10 illustrate the variation of maximum linear and nonlinear drifts along the height of 
the building subjected to fault-normal pulse and fault-parallel displacement, respectively. It is 
observed from Figs. 5, 7, 9 and 10 that for linear system the multi-component differential-ground-
motion effect is mainly important for the first story and depending on the time delay and earthquake 
magnitude this effect can amplify the first story drifts by more than 2 or 3 times relative to the drift 
computed for synchronous horizontal ground motion (τ  = 0). This is in excellent agreement with 
theoretical prediction of these effects by Trifunac and Todorovska (1997). The drift of the top stories 
is not amplified and is relatively insensitive to differential motion effects. However, because of the 
high velocity of the ground motion near earthquake faults the story drifts quickly exceed the typical 
design levels and fault-normal pulses produce more intense drift demand than the fault-parallel 
displacement.  

 

Fig. 7. Maximum linear drift along the height of the building, excited by fault-parallel displacement, only for 
horizontal (left) and horizontal, vertical and rocking strong motion (right), and time lags from 0 to 0.10 s. 

 

From Figs. 6, 8, 9 and 10 it is seen that for nonlinear system the effect of vertical and rocking 
differential ground motions becomes more prominent for the top-story drifts as well. In this condition 



the simultaneous action of horizontal, vertical, and rocking differential ground motions can amplify 
the drift of top stories by more than 2 or 3 times relative to the common analysis for uniform 
horizontal ground motion and for the cases we analyzed this occurs for fault-normal pulse.  

 

Fig. 8. Maximum nonlinear drift along the height of the building, excited by fault-parallel displacement, for 
horizontal only (left) and horizontal, vertical and rocking strong motion (right), and time lags from 0 to 0.10 s. 

 

 

Fig. 9. Linear (left) and nonlinear (right) peak drifts in the response to fault-normal pulse, with negative vertical 
and rocking components of motion, and for time lags from 0 to 0.10 s. 
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