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SUMMARY:  

An analytical method is proposed to determine the dynamic response of 3-D rectangular liquid storage tanks 

with four flexible walls, subjected to horizontal seismic ground motion. Fluid-structure interaction effects on the 

dynamic responses of partially filled fluid containers, incorporating wall flexibility, are accounted for in 

evaluating impulsive pressure. Solutions based on 3-D modelling of the rectangular containers are obtained by 

applying the Rayleigh-Ritz method using the vibration modes of flexible plates with suitable boundary 

conditions. Moreover, an analytic procedure is developed for deriving a simple formula that evaluates convective 

pressure and surface displacements in a similar rigid tank. The variation of dynamic response characteristics with 

respect to different tank parameters is investigated. A mechanical model, which takes into account the 

deformability of the tank wall, is developed. Accordingly, a simplified but an accurate design procedure is 

developed to improve code formulas for the seismic design of liquid storage tanks. 
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1. INTRODUCTION 
 

Liquid storage tanks are important components of lifeline and industrial facilities. They also play an 

important role in the rescue work after an earthquake. Based on observations from previous 

earthquakes, it is concluded that liquid storage tanks can be subjected to large hydrodynamic pressures 

during earthquakes. Consequently, high stresses can cause buckling failure in steel tanks. In concrete 

tanks, due to the large inertial mass of concrete, the stresses could be large and result in cracking, 

leakage or even collapse of the structure. The poor performance of some of these structures in past 

earthquakes has led engineers and researchers to study this problem, and to improve the behaviors of 

these structures. 

There are some numerical and a few analytical methods that have been used for dynamic analysis of 

concrete rectangular liquid storage tanks. Hoskins and Jacobsen (1934) published the first report on 

analytical and experimental observations of rigid rectangular tanks under a simulated horizontal 

earthquake excitation. Housner (1963,1957) developed the most commonly used analytical model for 

estimating the dynamic response of a rigid rectangular tank. This model, with some modifications, has 

been adopted in most of the current codes and standards. 

The 1964 Alaska earthquake (Haroun, 1983) caused the first large-scale damage to tanks of modern 

design of its time and initiated many investigations into the dynamic characteristics of flexible 

containers. Several studies were carried out to investigate the dynamic interaction between the 

deformable wall in the tank and the liquid, and showed that the seismic response of a flexible tank 

may be substantially greater than that of a similarly rigid tank. A three-degrees-of-freedom (3 DOF) 

model of the ground-supported cylindrical tank was developed by Haroun (1983), the application of 

which resulted in design charts used to estimate sloshing, impulsive and rigid masses.  

For rectangular tanks, Haroun (1984) presented a very detailed method of analysis on the typical 

system of loadings. The hydrodynamic pressures were calculated by a classical potential flow 

approach. The formula of hydrodynamic pressures only considered the rigid wall condition. This may 



be due to the fact that rectangular fluid containers are usually made of reinforced or prestressed 

concrete and may be considered quite rigid dynamically. Nevertheless, there are containers of this type 

for which flexibility must be taken into account in their dynamic response analysis, such as very large 

reinforced concrete structures used for the storage of nuclear spent fuel assemblies or prestressed 

concrete water tanks (Luft, 1984).  

Some numerical methods that consider wall flexibility have been used for dynamic analysis of 

rectangular liquid storage tanks. Dogangun et al. (1996) and Dogangun and Livaoglu (2004) 

investigated the seismic response of liquid-filled rectangular storage tanks using the three-dimensional 

Lagrangian fluid finite element. Park et al. (1992) and Koh et al. (1998) studied the seismic response 

of rectangular tanks with four flexible walls by using a three-dimensional coupled boundary element–

finite element method. Ghaemmaghami and Kianoush (2010) investigated the dynamic behavior of 

concrete rectangular tanks using the FEM in 2D space. 

Moreover, there are a few analytical methods that have been used for dynamic analysis of rectangular 

liquid storage tanks. Kim et al. (1996) studied dynamic behavior of 3-D rectangular flexible fluid 

containers using the Rayleigh-Ritz method. In their study, only a pair of walls, orthogonal to the 

direction of the applied ground motion is assumed to be flexible, while the other pair remains rigid. 

Chen and Kianoush (2009) proposed a simplified method using the generalized SDOF system to study 

the dynamic response of liquid storage tanks. In the analytical methods that have so far been used for 

dynamic analysis of rectangular liquid storage tanks, neither the effect of sloshing nor the effect of 

wall flexibility have been appropriately considered. Moreover, the current design approach is 

inaccurate, as it does not fully consider all the major parameters affecting the response.  

In this study, an analytical method is presented to investigate the dynamic response of flexible 3D 

rectangular liquid storage tanks with flexible walls on all four sides, subjected to horizontal seismic 

ground motion. Solutions based on three-dimensional modelling of the rectangular containers are 

obtained by applying the Rayleigh-Ritz method using the vibration modes of flexible plates with 

suitable boundary conditions. Trigonometrical functions that satisfy boundary conditions of the 

storage tank such that the flexibility of the wall is thoroughly considered are used to define the 

admissible vibration modes. The analysis is then performed in the time domain. The main objective of 

the final part of this study is to close the gap between analytical studies and practical design 

considerations. This is to provide the practicing engineers with a simple and sufficiently accurate tool 

for estimating seismic response of rectangular tanks. A mechanical model, which takes into account 

the deformability of the tank wall, is developed. The parameters of such a model can be obtained from 

developed charts and the maximum seismic loading can be predicted by means of a response spectrum 

characterizing the design earthquake. Accordingly, a simplified but an accurate design procedure is 

developed to improve code formulas for seismic design of liquid storage tanks. 

 

 

2. FLUID MOTION IN RECTANGULAR TANKS  
 

A rectangular tank with four flexible vertical walls of uniform thickness ts and a horizontal rigid 

bottom is partially filled with incompressible and non-viscous liquid of depth HL, as shown in Figure 

1. The side lengths and height of the tank are 2Lx, 2Ly and Hs, respectively. The walls of the tank are 

considered as thin plates made of linearly elastic, homogeneous and isotropic material and are 

assumed to perform transverse bending deflection but no in-plane deformation. The motion of the 

liquid is assumed to be frictionless and irrotational so that the velocity distribution of the liquid may 

be represented as a gradient of the velocity potential. According to the theory of fluid dynamics, the 

liquid velocity potential ( Φ ) should satisfy the Laplace equation and the hydrodynamic pressure at 

any point and time is given by 

 

( , , , ) lp x y z t
t

ρ
∂Φ

= −
∂

 (1.1) 

  

in which ρl is the mass density of the liquid. Considering the walls of the tank to be permeable and no 

cavitation on the liquid–wall interface, the liquid adjacent to the wall must move with it by the same 

velocity.  



 

 

 

Figure 1. 3D model of rectangular container 

 

 

3. SOLUTION OF HYDRODYNAMIC PRESSURE 
 

The coupling between liquid sloshing modes and wall vibrational modes is weak; consequently, for 

the analysis it is sufficient to consider the two uncoupled systems separately. This includes the liquid-

wall system and the free surface gravity waves in a similar rigid tank (Koh et al., 1998; Kim et al., 

1996; Veletsos and Tang, 1987; Haroun, 1983, 1980).The solution for Ф will be expressed as the sum 

of an impulsive component, Фi , and a convective component, Фc . The impulsive component of the 

solution satisfies the actual boundary conditions along the tank wall and bottom and the condition of 

zero hydrodynamic pressure at z = HL , whereas the convective component corrects for the difference 

between the actual boundary condition at z = HL and the one considered in the development of the 

impulsive solution. If the tank is subjected to an earthquake in the x direction( gxu�� ), using this 

fact that liquid velocity potential ( Φ ) should satisfy the Laplace equation and considering that the 

liquid adjacent to the wall must move with it by the same velocity, the condition of zero hydrodynamic 

pressure at z = HL , the method of separation of variables and considering symmetry of both the liquid 

and the tank about the x–z plane and antisymmetry of them about the y–z plane, the impulsive velocity 

potential and the impulsive pressure can be analytically given in an infinite series form including the 

tank–wall dynamic deflection.  

 

3.1. Impulsive responses 
 

It is important to develop a set of suitable, admissible functions to describe the vibration of the tank 

wall in the Rayleigh–Ritz method. For this purpose the transverse motion of flexible wall is expressed 

as a linear combination of admissible functions: 

 

1 1

( , , , ) ( )
M N

H V

mn m n

m n

w x y z t f t
= =

= Ψ Ψ∑∑  (3.1) 

 

where coefficients ( )mnf t =generalized coordinates to be determined; V

nΨ =nth vibration mode of a 

cantilever beam that is appropriate for wall displacement in a vertical direction; and H

mΨ =mth 

eigenfunction of vibrating beams, which boundary conditions are similar to those of the wall in 

horizontal direction. Because of the symmetry of both the liquid and the tank about the x–z plane and 

antisymmetry of them about the y–z plane only a quarter of the tank with appropriate boundary 

conditions is considered. As the tank wall can only provide transverse deflection but no in-plane 

deformation, the vibration of the tank wall can be equivalent to the vibration of a line supported 



rectangular plate. The connecting line of the adjacent walls corresponds to the internal simply support 

which prevents the transverse motion of the plate but offers no resistance to the rotation. Using Eq. 

(3.1) the transverse motion of flexible wall can be rewritten in a matrix form as: 

 
w = Γf  (3.2) 

 

A matrix equation which governs the earthquake response of the undamped liquid-wall system can be 

obtained using the Green principle and by application of Hamilton’s principle: 

 

( )s liquid eff+ + =��M M f Kf P  (3.3) 

 

sM and K are the mass matrix and stiffness matrix of the flexible wall that is modeled as a plate, 

respectively. 
liquidM  and 

effP are the added mass matrix due to the effect of the liquid and the effective 

earthquake load vector, respectively. This matrix equation of motion can be solved by the mode-

superposition method. By equating the determinant of the left hand of Eq. (3.3) to zero, frequencies of 

impulsive modes of tank and eigenvectors pertinent to them are obtained. 

 

1

K

k k

k

qf φφφφ
====

==== ∑∑∑∑  (3.4) 

 

kφφφφ is the modal vector pertinent to the kth mode of vibration of the tank. K M N= ×  is the number of 

modes. Introducing damping into Eq. (3.3) and using Eq.(3.4), results in: 

 
22

k f k k k k k gx
q q q u+ + = −�� � ��ζ ω ω β  (3.5) 

 

where
fζ , kω

 
and 

kβ are damping ratio, frequency and modal participation factor of the kth 

impulsive mode respectively. The complete time history of ( )tq  and its time derivatives can be 

computed by a step-by-step application (Interpolation of Excitation). Once they are obtained, the 

displacement, acceleration and the impulsive pressure can be calculated. 
 

3.2. Convective responses and surface displacements 

  
The convective pressure pc can be evaluated with reasonable accuracy by considering the tank wall to 

be rigid. It needs to satisfy Laplace's equation. Solution of Laplace's equation such that it satisfies the 

boundary conditions may be expressed as: 

 

0

( , , , ) ( ) sin( ) cosh( )c l x j j j j

j

p x y z t L D A t x zρ α α
∞

=

= ∑  (3.6)

  

in which 

 

(2 1) 2j j= +λ π  (3.7) 

j j xL=α λ  (3.8) 

22( 1) cosh( )j

j j j
D  = − −  λ λ µ  (3.9) 

L xH L=µ  (3.10)

0
( ) ( ) sin ( )

t
c c

j j gx j
A t u t dω τ ω τ τ = − ∫ ��  (3.11) 

 

where ( )jA t represents the instantaneous pseudo acceleration of an undamped SDOF system which has 



 a circular natural frequency c

jω   equal to that of the jth sloshing mode of vibration of the liquid and is 

excited by a base acceleration ( )gxu t�� .  

 
2

tanh( )
c

j j j lg Hω α α=  (3.12)

 

Damping of convective responses ( cζ ) can be introduced into Eq. (3.11) easily. The vertical 

displacement, ( , , )x y tη , of an arbitrary point at the liquid surface can be determined: 

 

2
0

2( 1) ( )
( , , ) sin( )

j

j

x j

j j

A t
x y t L x

g
η α

λ

∞

=

−
=− ∑  (3.13) 

 

On making use of identities (Standard Math Tables (Beyer 1976)): 

 

2 0
0

2 tanh( )
lim 1
x

j j

x

xλ

∞

→
=

= =∑  (3.14) 

 

Using Eqs. (3.13) and (3.14) the maximum surface displacement near the wall , maxη , is determined: 

 

( )max ac x
S g L≤η  (3.15) 

 

in which
acS is the maximum of

0( )A t , or the spectral acceleration corresponding to the natural 

frequencies 
0

c

c j
j

ω ω
=

= and damping 
cζ .  Eq.(3.15) is the same as ACI 350.3-06 formula used to 

determine the vertical surface displacement. 

 

 
4. SEISMIC DESIGN FORCES 
 

The most common standards and codes currently used for the design of tanks are ACI 350.3 (2006), 

Eurocode-8 (2006) and New Zealand standard (2004). Seismic loads in these standards are based on 

the mechanical model derived by Housner (1963,1957) for rigid tanks with some modifications. The 

design procedure considers two response modes of the contained liquid: (1) The impulsive response in 

which the portion of the liquid accelerates with the tank walls, and (2) the convective response caused 

by the portion of the liquid sloshing in the tank. It should be noted that in these codes, the importance 

of the effects of wall flexibility has been recognized and the corresponding increase in the acceleration 

coefficients has been adopted. However, the effect of wall flexibility has not been thoroughly 

accounted for by a reasonable and accurate method. The main objective of this part of the study is to 

devise a practical approach which would allow, from an engineering point of view, a simple, fast and 

sufficiently accurate estimate of the seismic response of rectangular storage tanks. 

 

4.1. Hydrodynamic base shear  

 

The instantaneous hydrodynamic base shear Q(t) is given by:  

 

0
( ) 2

y l

y x

L H

L x L
Q t p dzdy

− =
= ∫ ∫  (3.16) 

 

The hydrodynamic base shear due to wall deformation relative to the ground Qf (t) using Eqs. (1.1), 

(3.4) and (3.5) can be expressed as: 

 



1

( ) ( )
K

f

f k k

k

Q t Q u t��

====

==== ∑∑∑∑  (3.17) 

 

where ( )ku t is the solution of the differential equation: 

 
2( ) 2 ( ) ( ) ( )k f k k k k gxu t u t u t u tζ ω ω+ + = −�� � ��  (3.18) 

 

For the applicable tank, all frequencies of impulsive modes are large. Acceleration spectral spectrums 

accepted in codes show that the maximum accelerations which correspond to significant modes are 

close to each other. Therefore the mode that has the maximum 
f

kQ is the predominant mode. The 

dimensionless fundamental natural frequency, 2 4 1/2( )f s f s st H DΩ = ρ ω where D  is the flexural rigidity 

of the tank wall, that corresponds to the predominant mode of vibration is displayed for tanks 

completely filled with water in Figure 2 assuming normal density concrete is used. The fundamental 

natural frequency (
fω ) that is pertinent to Ω f

can be determined for different values of the aspect 

ratio. Similar charts for different thicknesses can be found in Hashemi et al. (2012). Figure 2 shows 

that the first mode is predominant when 1.2≤x yL L , otherwise another mode could become 

predominant. Therefore, in general, for considering the seismic response, it is better that the effect of 

all modes is considered. The value of ( )��
fu t corresponding to 

fω  can be obtained by the solution of 

Eq.(3.18) for the predominant mode. It is assumed that the maximum accelerations corresponding to 

significant modes are equal to the maximum of ( )��
fu t . Therefore Eq.(3.17) can be rewritten 

approximately: 

 

( ) ( )
f f f

Q t m u t= ��  (3.19) 

 

where f
m  is obtained by combining f

kQ  for all modes (k=1,2,..,K) by the Complete Quadratic 

Combination (CQC) method (Kiureghian (1980)). The value of fm can be approximated using 

Eq.(3.20) obtained by curve fitting the numerical results. The numerical results show that f
m is 

independent of wall thickness.  

 

2 2
tanh 0.866 1.732

f x x

L Ll

m L L

H Hm

      
=       

      
 (3.20) 

 

where lm is the total mass of liquid. Investigations show that when 0.65<y LL H , a correction 

factor for m f
, c f

 , should be considered: 

 

1.25-0.71( - 0.3)
f y L

c L H=  (3.21) 

 

To determine the base shear one can consider only the first mode of convective response while the 

next modes are negligible: 

 

( ) ( ) ( ) ( )c c f f r gxQ t m u t m u t m u t= + +�� �� ��  (3.22) 

 

where
 rm , f

m  and 
cm  are equivalent masses corresponding to forces associated with ground motion, 



 wall deformation relative to the ground, and liquid sloshing, respectively. 
0

( ) ( )
c

u t A t=��  is the absolute 

acceleration of a SDOF system which has a circular natural frequency cω . Since the base shear and 

moment due to wall deformability are proportional to the relative acceleration of the wall, one can 

rearrange Eq. (3.22) in order to estimate the maximum seismic loads by means of a response spectrum. 

And subsequently, the maximum base shear can be estimated by: 

 
2

2 2

max max
( ) ( ) ( )( )

c ac f af r f gx
Q m s m s m m u = + + − ��  (3.23) 

 

in which 
afS  is the spectral accelerations corresponding to the natural frequencies

fω . 

 

4.2. Overturning moment 

 

The overturning moment M(t) induced on a section of the tank immediately above its base is given by: 

 

0
( ) 2

y l

y x

L H

L x L
M t p z dzdy

− =
= ∫ ∫  (3.24) 

 

One may consider only the first mode of convective response to determine the overturning moment: 

 

( ) ( ) ( ) ( )
c c c f f f r r gx

M t m h u t m h u t m h u t= + +�� �� ��  (3.25) 

 

where 
ch , fh and rh are, respectively, the heights at which the convective component of the liquid 

mass, 
cm , equivalent mass corresponding to force associated with ground motion, rm , and equivalent 

mass corresponding to force associated with wall deformation relative to the ground, fm , are 

considered to be concentrated. A proper function is obtained by curve fitting the numerical results: 

 

( )0.58-0.12 tanh 2.5 -0.25
f L x L

h H L H =    (3.26) 

 

The numerical results show that the effect of variation of thicknesses or 
y L

L H  on 
f Lh H  is 

negligible. Using Eqs.(3.22) and (3.25) a mechanical model that is equivalent with the rectangular 

liquid storage tank has been developed and shown in Figure 3. The maximum overturning moment 

applied to the bottom of the wall is given by: 

 

2
2 2

max max
( ) ( ) ( )( )

c c ac f f af r r f f gx
M m h s m h s m h m h u = + + − ��  (3.27) 

 

 

5. VALIDITY VERIFICATION 
 

In this section, a numerical example is presented to investigate the convergence and validity of the 

present method. A computer program was first written to check the validity of the theoretical 

formulation in computing seismic responses of the flexible storage tank. 

Since rectangular tanks are used most often for the wet-type storage of nuclear spent fuel assemblies, a 

typical dimension for those tanks is selected (Koh et al., 1998): the height of the wall, Hs=10 m; the 

wall thickness, ts=1 m; the water depth, HL=9 m; the length of the short side wall, 2Lx= 20 m; and the 

length of the long side wall, 2Ly=50 m, and typical material properties for the concrete tanks: the 

density, ρs=2400 kg/m3; the Young’s modulus, E=2.1×1010 N/m2; and the Poisson’s ratio, ⱱ=17. The 

N-S component of the 1940 El Centro Earthquake records is used as an input motion in x direction. 

The tank is assumed to be fixed to the ground, and to have 3 percent structural damping.  



  

Figure 2. Dimensionless fundamental natural frequency ( Ω f
) for tanks completely filled with water 

( 0.1
s L

t H = ) 

 

The time history of the resultant force acting on the long side wall of the tank model is compared with 

those presented by Koh et al. The comparison shows that they are in good agreement and the 

maximum of the resultant force predicted by the present method (9460 kN) is very close to that 

obtained by Koh et al. (9244 kN).The accuracy of the present method can be further verified by 

pressure distribution over the long side wall when the resultant forces reach their peak values. The 

predictions by the proposed method are compared with the results from the coupled 3 dimensions 

boundary element-finite element method (Koh et al., 1998), a Lagrangian fluid finite element 

(Dogangun and Livaoglu, 2004) and the results obtained by using the Eurocode-8 (Dogangun and 

Livaoglu, 2004) as shown in Figure 4. Time history of the sloshing motion at the middle cross-section 

of the long side wall are presented and compared with those using the indirect boundary-element-

finite-element method (Koh et al., 1998)  and finite element method (Ghaemmaghami, 2010) in Figure 

5. The predictions by the proposed method are virtually identical to those of mentioned references. 

Consider the tank discussed in the preceding example is full of water and its impulsive and convective 

responses are damped 5% and 0.5%, respectively. The maximum ground acceleration of the N-S 

component of the 1940 El Centro earthquake records is
max( ) 0.313ggxu =�� . The fundamental natural 

frequency of sloshing, 1.19 secc rad=ω , is obtained from Eq.(3.12); and consequently, the spectral 

acceleration corresponding to it for a damping ratio of 0.5 %cζ =  can be found from spectral response 

( 0.049
ac

S g= ). The fundamental impulsive frequency of liquid-wall vibration for values of 1x LL H = , 

2.5
y L

L H = and 0.1s Lt H =
 

is determined from Figure 2; 2.87Ω =f
and 24.9 secf radω = . The 

spectral acceleration for a damping ratio of 5 %fζ =  is 0.799afS g= . The remaining parameters can 

be obtained from Eqs.(3.20) and (3.26): 0.271f lm m = , 0.464 4.64f Lh H m= = , and using ACI 350.3: 

0.542r lm m = , 0.4 4r Lh H m= = , 0.473c lm m = and 0.582 5.82c Lh H m= = . 

The maximum surface displacement near the wall, the maximum base shear and the maximum 

overturning moment induced on a section of the tank immediately above its base, respectively, are 

determined using Eqs. (3.15), (3.23) and (3.27) as 
max( ) 0.49=app mη , 6

max( ) 22.99 10appQ N= × and 

6

max( ) 103.4 10appM N m= × ⋅
 

that are in good agreement with the exact results that are 

max( ) 0.4556mexactη = , 6

max( ) 19.32 10= ×
exact

Q N
 
and 6

max( ) 86.13 10
exact

M N m= × ⋅ . 



  

Figure 3. Mechanical model of flexible tank 

 

 

Figure 4. Comparison of pressure distributions along 

the height of the middle cross-section of the long side 

wall 
 

 

 

 
 

Figure 5. Time histories of liquid surface elevation at the middle cross-section of the long side wall 

 

 

6. Conclusions 

 
Analytical solution methods are developed that can be used for the analysis of the dynamic behavior of 

partially filled rectangular fluid containers under horizontal ground excitations. 

Using the combination of the superposition method and the method of separation of variables, the 

exact analytical solution of the impulsive velocity potential is derived. Solutions based on three-

dimensional modeling of the rectangular containers are obtained by applying the Rayleigh-Ritz 

method using the vibration modes of flexible plates with suitable boundary conditions. An analytical 

procedure is developed for deriving a simple formula that estimates convective pressure and surface 

displacements in a similar rigid tank.  

The results of this study show that hydrodynamic pressure distributions for assuming rigid and flexible 

walls differ from each other in magnitude and in shape. The hydrodynamic pressures in the middle of 

the wall for flexible storage tanks are generally larger than for rigid storage tanks. Moreover, 

hydrodynamic pressure varies not only in the vertical direction but also in the horizontal direction over 

the wall surface. The validity and convergence of the proposed methods are confirmed through 

numerical examples. The predictions by the proposed method are in good agreement with the results 



from a Lagrangian fluid finite element, FEM, and the results obtained by using the coupled BEM-
FEM. 

A mechanical model, which takes into account the deformability of the tank wall, is developed. The 

maximum seismic response of a deformable rectangular tank can therefore be estimated by means of a 
response spectrum. It is recommended that the effect of wall flexibility on hydrodynamic pressures 

should be considered in design codes and standards. 
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