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SUMMARY: 

Experimental methods such as hybrid or pseudo-dynamic tests are always subjected to experimental errors which 

effect on the obtained response is important to assess. An analytical linear model formulated on state-space 

equations has been developed for a multi DoF hybrid testing system including the components of the control and 

the specimen. For an example of a single DoF steel frame, the parameters of the model have been calibrated 

through comparison with experimental data of the control system. The model has been used to predict in pseudo-

dynamic tests on such specimen the control errors and their consequences in terms of eigenfrequency and 

damping distortion in the test response. These predictions match with the observed experimental data and allow 

understanding, for example, the effects on the response of performing the test at different testing speeds or for 

different parameter configurations of the control algorithm. 
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1. INTRODUCTION 

Experimental methods such as hybrid or pseudo-dynamic (PsD) tests are used for validation of the 

response of structures to earthquakes and other dynamic actions. However, these experiments are 

always subjected to experimental errors, such as control errors, which effect on the obtained response 

is important to assess so that the reliability of the results can be guaranteed (Shing and Mahin, 1987, 

Thewalt and Roman, 1994, Molina et al., 2002, Mosqueda et al., 2007). 

A linear analytical multi-DoF model of a complete PsD testing system was developed and calibrated 

by means of comparison with experimental results as reported by Molina et al. (2010). The model 

considered for the physical part a linear structure specimen, the compressibility of the oil in the 

hydraulic actuators, its leakage between the cylinder chambers and the internal friction of the pistons. 

The model described in this article (Molina et al., 2012b) constitutes an improvement of that one. With 

respect to the components of the hydraulic devices, it introduces a second-order servo-valve model, 

which allows applying the model to higher frequencies that can be relevant for fast hybrid tests. The 

control algorithm is based on a PID formula on the control error, but includes also additional 

parameters on error second derivative and feed-forward velocity and acceleration, as well as the 

measured force and the pressure difference between the cylinder chambers. Finally, with respect to the 

testing method, it considers a general category of hybrid tests that may include also numerical 

substructuring. 

For an example of a SDoF steel frame, the physical parameters of the model have been calibrated 

through comparison with experimental FRFs of the control system. With respect to its previous 

version that considered purely proportional servo-valves, this current model is able to reproduce the 

experimental FRFs with accuracy in a wider range of frequencies that arrives now up to 8 Hz. In order 

to have the best match with the experimental curves, the parameters of the linear model need to be 

adjusted to the working amplitude of the test. However this is not a big barrier for the purpose of 

describing the general behaviour of the expected errors within that range of frequency during a hybrid 

test. The analytical model has been used to study the behaviour of the testing method in the presence 



of control errors and how this is modified by the control and the testing parameters. The analytical 

results have been successfully compared (Molina et al., 2011a, 2012b) with monitoring techniques 

applied to the experiments (Molina et al., 2011b) in order to validate also the reliability of those 

monitoring techniques. 

This article describes the principles of the formulation of the model and presents the results of a 

parametric study performed with it for the SDoF example. The effect on the testing errors in terms of 

response eigenfrequency and damping ratio is shown as a function of the control parameters and the 

testing speed. 

2. MODEL OF THE CONTROL SYSTEM 

This section develops an analytical linear model for the control system of a M-DoF specimen using M 

actuators. Fig. 1 shows a schematic representation of the model (Molina et al., 2012b). The equations 

regarding the servo-valve, the actuator, the specimen and the controller are formulated as follows. 

Figure 1. Model of the control system. 

Linear geometrical and static transformations between the M displacements at the DoFs of the 

specimen spd  and the displacements of the M pistons pisd , as well as between the piston load cell 

forces 
pisr  and the specimen restoring forces 

spr are assumed. That is, 

( ) ( )pis spt td Td ,           ( ) ( )T

sp pist tr T r  (1) 

where T  is a constant transformation matrix and t  is the time variable. 

Regarding the servo-valve model, for a range of small oscillations around an equilibrium position of 

zero force on the piston, the two-way oil flow rate will be assumed proportional to the spool 

displacement 

( ) ( )SV SV SVt tq k d  (2) 

where SVk  is the diagonal matrix of flow-gain coefficients. The displacement of the spool of the 

servo-valves SVd  is assumed to follow, as described in the literature (e.g., Plummer, 2008), the servo-



valve reference input signal 
r

SVd , according to a second order transfer function. In the state space, this 

will be expressed as 

( ) ( )SV SVt td v ;           
2 2( ) ( ) ( ) 2 ( )r

SV SV SV SV SV SV SV SVt t t tv d d v  (3) 

where SVv  is the spool velocity and SV  and SV  are, respectively, the servo-valve natural frequency 

and damping ratio. The servo-valve input signal is proportional to the controller command, i.e., 

( ) ( )r

SV con cont td k c  (4) 

The rate of the hydraulic forces on the pistons ( )P tF  will be determined through the oil column 

stiffnesses oilk , by the servo-valve oil fluxes and piston velocities ( ( ) ( )pispis t tv d ), as well as by 

the leakage between the cylinder chambers, i.e., 

1 1( ) ( ) ( ) ( )P oil pis SV pis lea Pt t t tF k A q v F  (5) 

where pisA  are the piston sections and lea  are the time constants of leakage. 

For the model of the specimen we will consider the dynamic equilibrium equations 

( ) ( ) ( ) ( )sp sp sp sp sp sp spt t t tm a c v k d r  (6) 

where spa , spv , spd  and spr  are respectively the acceleration, velocity, displacement and restoring 

force vectors of the specimen and spm , spc  and spk , are respectively its matrices of mass, damping 

and stiffness. By free-body equilibrium, the load cell forces can be written as a function of the other 

forces acting on the pistons 

( ) ( ) ( ) ( )pis P pis pis pis pist t t tr F m a c v  (7) 

where pism  and pisc  are respectively the diagonal piston matrices of mass and internal damping. 

Then, by introducing (1) and (7)  in (6),  

1

( ) ( ) ( ) ( )T T T
sp sp pis P sp pis sp sp spt t t tv m T m T T F c T c T v k d  (8) 

The digital controller is approximated by an analogue control law 

1( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

con P I I D A

r r

VFF pis AFF pis r pis P

t t t t t

t t t t

c k k k k

k v k a k r k P

 (9) 

within this model, where, respectively, Pk , Ik , Dk  and Ak  are the matrices containing the 

proportional, integral, derivative and second-derivative gains on the control error, VFFk  and AFFk  are 

the feed-forward gains on the velocity and acceleration of the reference signal and, finally, rk  and 



Pk  contain the load-cell and differential-pressure gains. The error signal vector is computed as the 

difference between the reference (target) displacement 
r

pisd  and the measured displacement pisd

( ) ( ) ( ) ( ) ( )r r

pis pis sp spt t t t td d Td Td  (10) 

The integrated error verifies by definition 

( ) ( ) ( ) ( )r

I sp spt t t tTd Td  (11) 

Finally, we will express the model of the control system by the state equations 

( ) ( ) ( )cs cs cs cs cst t tx A x B u  (12) 

where, by choice, 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

cs sp sp P I SV SV

T
r r r

cs sp sp sp

t t t t t t t

t t t t

x d v F d v

u d v a

 (13) 

are the state and input vectors respectively. The derivation from the previous equations of the formulas 

for the coefficients of the system matrices is given by Molina et al. (2012b). 

3. MODEL OF THE HYBRID TESTING SET-UP 

The hybrid test will consist of the numerical integration of an equation of motion of the type 

2

2
( ) ( ) ( ) ( ) ( )an an an meas INP

hyb hyb hyb hyb hyb hyb hyb hyb

d d
T T T T T

dT dT
m d c d k d r f  (14) 

where T  is the prototype time variable. This prototype time coincides with the laboratory time only in 

the case of a real-time test. Otherwise, for a scaled-time PsD test, the laboratory time will be several 

times larger than the prototype time, that is, t T , being  the time scale factor. We will assume 

within this model that the errors introduced by the numerical integration of this equation are 

negligible. This is not a general case, but could be applied for most of the integration methods when it 

is affordable to use them with a sufficiently small time increment. 

Equation (14) will be rewritten for the laboratory time as 

2 ( ) ( ) ( ) ( ) ( )an an an meas INP
hyb hybhyb hyb hyb hyb hyb hybt t t t tm d c d k d r f  (15) 

where 
hybd  is the whole vector of displacements (analytical and experimental DoFs) in the hybrid 

system, from which the reference displacements for the control system will be derived as 

( ) ( )r hyb

sp sp hybt td L d  (16) 

being 
hyb

spL  the compatibility transformation matrix. Also in (24), 
meas

hybr  are the measured forces, 



conjugate of 
hybd , that is, 

( ) ( ) ( ) ( ) ( )meas sp sp

hyb hyb sp hyb sp sp sp sp sp spt t t t tr L r L m a c v k d  (17) 

where ( )sp tr  are the restoring forces in the specimen as measured from the load cells of the actuators 

according to equation (1), 
sp

hybL  is the required equilibrium transformation matrix and (11) has been 

used. The mass, damping and stiffness matrices that appear in equation (15) are the analytical 

representation of the properties of the hybrid system that are not physically present in the specimen. 

For example, in the case of a linear specimen, in order to represent a linear goal hybrid system defined 

by the equation 

2 ( ) ( ) ( ) ( )goal goal goal INP
hyb hybhyb hyb hyb hyb hybt t t tm d c d k d f  (18) 

those matrices should be defined as: 

2(1 )an goal sp hyb

hyb hyb hyb sp spm m L m L

(1 )an goal sp hyb

hyb hyb hyb sp spc c L c L  (19)

an goal sp hyb

hyb hyb hyb sp spk k L k L

Note that in case of a hybrid test without substructuring for a specimen having only hysteretic 

damping, the analytical stiffness and damping matrices should be null, whereas the analytical mass 

matrix should still be computed according to equation (19). 

Finally, the independent term in equation (15) for the case of seismic excitation would be computed as 

( ) ( )INP goal

hyb hyb gt tf m Ja  (20) 

Where 
ga  is the vector of ground accelerograms and J  is the geometric influence matrix for those 

accelerograms on the DoFs of the hybrid system. 

Now, as a preparation for the state equations, by calling ( ) ( )hybhyb t tv d , equation (15) can be 

rewritten as 

1
2( ) ( ) ( ) ( )

( ) ( ) ( )

an INP an an
hyb hyb hyb hyb hyb hyb hyb

sp
sphyb sp sp sp sp sp

t t t t

t t t

v m f c v k d

L m v c v k d

 (22) 

Where (17) has been used. 

In conclusion, the state equation for the hybrid test model is written as 

( ) ( ) ( )t t tx Ax Bu  (22) 

where, by choice, 

( ) ( ) ( ) ( ) ; ( ) ( )
T

INP

hyb hyb cs hybt t t t t tx d v x u f  (23) 



are the state and input vectors respectively and csx  are the state variables of the control system as 

defined by equation (13). The derivation from the previous equations of the formulas for the 

coefficients of the system matrices is given by Molina et al. (2012b). 

4. PARAMETRIC STUDY OF TESTING ERRORS EFFECTS IN A SDOF EXAMPLE 

The developed analytical model was calibrated for a 1-DoF specimen, controlled by two 20 ton 

actuators, tested by using the ELSA testing system. The one-storey 4-column steel frame NEFOREEE 

with cube shape of 3x3x3 m and a top slab mass of 8 tons was used as structure . This almost linear 

specimen had a natural frequency of 2.6 Hz and an equivalent damping ratio of 0.5%. The whole 

testing set-up as well as the sine chirp test that was performed for different configurations of the 

control in order to obtain the experimental FRFs of the control system were reported in previous works 

(Molina et al., 2010). Some of the parameters of the analytical model of the control system (12) were 

estimated before the comparison with the experimental results while some other parameters (such as 

, , , ,oil lea pis SV SVk c ) were manually optimised by visual matching of the analytical and 

experimental FRFs. In the model with a proportional servo-valve (Molina et al., 2010) for the closed 

and the open-loop graphs, the obtained comparison of experimental and analytical curves was 

acceptable for frequencies up to more or less 5 Hz, regarding amplitude, and up to 1.5 Hz, regarding 

the phase. With the current model that introduces a second-order representation for the servo-valve, 

the matching is acceptable for frequencies up to 8 Hz, regarding both amplitude and phase (Molina et 

al., 2012b). 

Once the calibrated parameters are got, the analytical model of the hybrid test can be used to predict 

the response frequency 
hyb

 and damping ratio 
hyb

 of the response as they are obtained from the first 

pole (eigenvalue of A ) in the testing system (22). The difference between those response parameters 

and the ideal ones associated to the goal system (18) constitutes the error introduced in the test by the 

control errors. By using the spatial model identification method (Molina et al., 2011ab, 2012a) the 

frequency and damping errors can be estimated from the test results. A successful comparison of the 

estimated errors from a series of PsD experiments and the analytical model predictions has been done 

for the SDoF example, initially with the proportional servo-valve model (Molina et al., 2011a) and 

more recently with the second order servo-valve model (Molina et al., 2012b). It has been observed 

that, at the scaled frequencies of the PsD test, the non-proportional behaviour of the servo-valve has no 

effect. In fact, the fastest test was conducted with 20 , that corresponds to an ideal response 

frequency of 2.6/20=0.13 Hz, which is in the range of accuracy (0-1.5 Hz) for this set-up with the 

simpler model based on a perfect servo-valve. 

For the current parametric study, apart from the testing speed , having in mind the control law (9), 

the parameters that will be used are , , , , , , , ,G P I D A VFF AFF P rM k k k k k k k k , where 

GM  is the gain margin, defined as the maximum scalar by which a given proportional gain 
Pk  can be 

multiplied without losing the stability, i.e., all the poles of the control system (12) must keep their real 

part negative. In this study, we will impose as a constrain a constant gain margin of 10, which is a safe 

recommendable value according to our experience. Thus, for the given testing set-up, once the value 

of all the control parameters is specified, except from 
Pk , the value of this gain will be determined 

from that constrain. 

For each parameter, except the time scale, a figure will be produced that considers the variation of this 

parameter in the abscissa, keeping the remaining parameters fixed to the default values: 

1000 500, 1000 0, 0I D A VFF AFF P rI Dk k k k k k k  (24) 

Then, each figure will contain three graphs. The upper graph will show the evolution of the response 

frequency relative error in the hybrid test. The middle graph will illustrate the response damping ratio 

error. And the lower graph will show the evolution of the proportional gain parameter /1000PP k



as required to satisfy the imposed gain margin of 10. In all the graphs, the solid line will refer to the 

testing speed 20 , and the dashed line will refer to 40 .

The effect of the variation of the integral gain parameter 1000 II k  is shown in the left side of Fig. 

2. The two upper graphs show how the frequency and damping errors can be diminished by reducing 

the value of this parameter, while according to the lower graph, the proportional gain needs to be 

reduced in order to keep constant gain margin of stability. However, there is a lower limit for the I
parameter as is made more evident in the zoom of the right side of Fig. 2. The errors are minimum for 

I  between 12 and 14 (depending on the type of error and on the testing speed). Going under this 

inferior limit, they grow very fast and P  approaches zero. 

Left side of Fig. 3 shows the effect of the variation of the derivative gain parameter 1000 DD k .

The two upper graphs show how the frequency and damping errors grow either by increasing or 

decreasing the value of this parameter, while the proportional gain needs to be reduced in both cases 

according to the lower graph, in order to keep constant gain margin of stability. Starting from the 

defined default values of the parameters, there is no advantage in introducing any variation of this 

parameter for this example. Right side of Fig. 3 shows the effect of the variation of the second 

derivative gain parameter 
Ak . From the default configuration, by introducing positive values of this 

parameter the proportional gain can be largely increased, keeping the same stability margin and 

largely reducing at the same time the frequency and damping errors of the test. This is true up to an 

upper limit around 
31.6 10Ak , after which all these tendencies are inverted. 

Left side of Fig. 4 shows the effect of the variation of the feed-forward velocity gain parameter 
VFFk .

This parameter does not affect the feedback of the closed loop and consequently has no influence in 

the stability (the required proportional gain is not modified by it). It can make reduce the frequency 

and damping errors of the test, even down to zero, but the required value of it is not the same for the 

zero of the frequency error as for the zero of the damping error. This also depends on the testing 

speed. Right side of Fig. 4 shows the effect of the variation of the feed-forward acceleration gain 

parameter 
AFFk . This parameter, as the previous one, has no effect on the required proportional gain 

for stability. It can make reduce the frequency or damping errors of the test, but not at the same time. 

This parameter and the previous one, when combined, can be interpreted as a 2-parameter filter that 

modifies the reference signal, without affecting the feedback, and that can be used to compensate on a 

particular band of frequency for the deficiencies of the rest of the control system. Probably, the right 

way to use these two parameters would be to optimise their values in combination so that, at least for 

one testing speed, both errors (frequency and damping) are set as close as possible to zero. 

Left side of Fig. 5 shows the effect of the variation of the load-cell gain parameter 
rk . For this 

example, negative values of this parameter behave in a similar way as the positive values of the 
Ak

parameter. It allows to increase drastically the proportional gain, for a constant gain margin, and this 

simultaneously reduces all the errors. The lower limit for these positive effects is around 
82.2 10rk . Finally, right side of Fig. 5 shows the effect of the variation of the pressure 

difference gain parameter 
Pk . As for the previous parameter, negative values make increase the 

proportional gain and reduce all the errors. The lower limit for these positive effects is around 
102.7 10Pk . However, as a difference with respect to the behaviour of the 

Ak  and 
rk

parameters, the use of a value of it that is close to the one that minimizes the errors is dangerous in this 

case because of an apparently explosive behaviour of the errors and the required proportional gain in 

the vicinity as observed in the graphs. 



Figure 2. Variation of error integral gain parameter (left) and zoom of the same graphs (right). 

Figure 3. Variation of error derivative gain (left) and error acceleration gain (right). 



Figure 4. Variation of velocity feed-forward gain (left) and acceleration feed-forward gain (right). 

Figure 5. Variation of load-cell gain (left) and pressure-difference gain (right). 

5. CONCLUSIONS 

A linear model of a system for hybrid testing has been developed that includes the most important 

aspects of the control system regarding the quality of the tests. The formulation is able to deal with 



several DoFs in the specimen controlled by several actuators. The model of the hydraulic actuators is 

done with symmetric pistons and considers the compressibility of the oil, the leakage between both 

chambers and the friction of the piston in the cylinder. A second order representation of the servo-

valve has been introduced so that the response at medium frequencies can also be covered as this may 

be important for the stability of the control system and for characterising its performance in dynamic 

tests. The model includes PID control loop with additional feed-forward on reference velocity and 

acceleration and differential pressure and load cell terms. 

After the calibration through experimental data of the parameters of the developed analytical model 

for a SDoF example, a parametric study of the effect of the control parameters on the testing errors has 

been conducted. This study allows to see how in order to reduce the testing errors for this example, a 

first group of the defined control parameters may help and be optimised independently of the testing 

speed (and presumably the natural frequency of the specimen), while a second group may also help, 

but their optimum value depends on the testing speed and the kind of error that should be minimised. 

To the first group belong controller gains applied to the integral of the control error or its second 

derivative, or applied to the load cell force or the pressure difference between the actuator chambers. 

To the second group belong the defined feed-forward gains applied to the velocity and the acceleration 

of the controller reference signal. The developed model is also expected to be used for the study of 

improved control algorithms or of alternative hybrid testing techniques. With the extended frequency 

bandwidth of application now attained after the introduction of the second-order servo-valve model, it 

could also be used for modelling shaking tables. 
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