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SUMMARY:  
Nonlinear static monotonic (pushover) analysis has become a common practice in performance-based bridge 
seismic design. The popularity of pushover analysis is due to its ability to identify the failure modes and the 
design limit states of bridge piers and to provide the progressive collapse sequence of damaged bridges when 
subjected to major earthquakes. Unfortunately, there is no complete technical reference in this field to provide 
the practicing engineer step-by-step procedures for pushover analyses and various nonlinear member stiffness 
formulations. This paper provides an overview of a newly published book “Seismic Design Aids for Nonlinear 
Pushover Analysis of Reinforced Concrete and Steel Bridges” by the authors of this paper, which fills the need 
for a complete reference on pushover analysis for practicing engineers. This technical reference provides five 
different nonlinear element stiffness formulation methods, ranging from the simplest to the most sophisticated, 
suitable for engineers at various levels of nonlinear structural analysis experience. The authors also provide a 
downloadable computer program, INSTRUCT (INelastic STRUCTural Analysis of Reinforced-Concrete and 
Steel Structures), that allows readers to perform their own pushover analyses. Several real-world examples 
provided in this paper demonstrate the accuracy of INSTRUCT’s analytical prediction by comparing numerical 
results with full- or large-scale test results, and excellent performance by INSTRUCT is observed. 
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1. NONLINEAR PUSHOVER ANALYSIS PROCEDURE 
 
The nonlinear pushover analysis is governed by the following equations. 
 

      UFK   (1.1)   
   

Partitioning the structural global stiffness  K , displacement   , load  F , and unbalanced force 

 U  matrices between free, (f), and restrained, (r ), degrees of freedom, yields 
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 (1.2) 

   
where  r represents the imposed displacement vector (i.e. displacement control);  R  represents 

the reaction vector, and  fF  is the incremental joint load vector (i.e. force control). INSTRUCT can 

perform both force and displacement controls concurrently during the pushover analysis. Expanding 
Equation (1.2) 

         ffrfrfff UFKK    (1.3)  

         rrrrfrf URKK    (1.4) 



   
Rewriting Equation (1.3) yields 

         rfrfffff KUFK    (1.5) 

   
which is solved for the free global degrees of freedom  f  by Gaussian elimination. Rewriting 

Equation (1.4) yields the reactions 

         rrrrfrf UKKR    (1.6) 

   
The total structural global displacements, forces, and reactions at load step t are determined from 

                 ttttttttt RRRFFF   111 ;;  (1.7) 
   

Once the total global displacement increment vector, t , is obtained, the individual member 

deformation increment vector,  te , can be calculated by 
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where  TA  is the transformation matrix between the global displacements increment vector and the 

member deformation increment vector.  teF  is the element force increment vector at load step t. 

 ek  is the individual element stiffness matrix. At the end of load step t, the element unbalanced force 

vector is calculated, as is the difference between the calculated element force vector from Equation 
(1.8) and the element force vector calculated based on the element’s hysteresis model or stress 
resultants from steel and concrete stress-strain relationships. These member unbalanced forces are 
transferred to the structural global degrees of freedom to form the global unbalanced joint force vector 
 U  for the next step. At each step, the individual element stiffness matrix is updated according to the 

element’s hysteresis model or material stress-strain relationship. 
 
 
2. MATERIAL LIBRARY 
 
INSTRUCT provides a material library covering 12 different material models. They are: 

1) Elastic 3D Prismatic Beam Material (3D-BEAM).   
2) Bilinear Hysteresis Model (BILINEAR): A hysteretic material model that has a bilinear 

backbone curve and an elastic unloading and reloading curve. This model is mainly used for 
spring elements described in the element library later. 

3) Gap/Restrainer Model (GAP): This hysteresis model simulates the inelastic behavior of 
restrainer or expansion joints.  

4) Takeda Hysteresis Model (TAKEDA): The Takeda model is mainly used to model the 
bending deformation of reinforced concrete members subjected to cyclic loading. 

5) Bilinear Moment-Rotation Model (HINGE): This model is only used in the inelastic 3D-beam 
(IE3DBEAM) element described in the element library later.  

6) Bilinear Hysteresis Model (IA_BILN): This model is used in the IE3DBEAM element. The 
model has a bilinear bending backbone curve and an elastic unloading and reloading curve.  

7) Finite-Segment Steel Stress-Strain Hysteresis Model (STABILITY1): This model can be 
either a bilinear stress-strain relationship, or a Ramberg-Osgood stress-strain relationship. The 
model is only used for the finite-segment element described in the element library later. 

8) Finite-Segment Reinforced Concrete Stress-Strain Hysteresis Model (R/CONCRETE1): This 
model is based on Mander’s concrete stress-strain relationship (Mander, Priestley, and Park, 



1988). It is only used for the finite-segment element.  
9) Finite-Segment Moment-Curvature Model (MOMCURVA1): This model is based on user-

defined backbone moment-curvature curves, and is only used for the finite-segment element.  
10) Plate Material (PLATE): This material defines the elastic material properties for the 

rectangular plate element.  
11) Point Material (POINT): This material defines the elastic material properties for the POINT 

element. 
12) Brace Material (BRACE): This material defines the hysteresis rule of Jain-Goel-Hanson’s 

model (1980). The model is mainly for struts with angle and rectangular tube sections. For I-
shape sections, several control points in the model are modified in order to fit the experimental 
results achieved by Black, Wenger, and Popov (1980). 

 
 
3. ELEMENT LIBRARY 
 
INSTRUCT provides an element library covering 7 element types. They are: 

1) Elastic 3D-Prismatic Element (3D-BEAM): This element has 12 degrees-of-freedom. The 
element considers axial deformation, torsional deformation, and bending deformations. 
Warping torsion and shear deformation are not considered. The geometric stiffness for 

P effects is available. 
2) Spring Element (SPRING): The spring element may behave elastically or nonlinearly 

depending on the material properties used. The spring could be axial, shear, or rotational 
spring.  

3) Inelastic 3D-Beam Element (IE3DBEAM): This element has 12 degrees-of-freedom. The 
geometric stiffness for P effects is available. IA_BILN, HINGE, or TAKEDA material 
could be used for this element. 

4) Finite-Segment Element (STABILITY): the member (see Figure 4.5) is divided into several 
segments. Each segment has 12 degrees of freedom and the cross section is divided into many 
small elements (or so called strings). The finite-segment element connects a start and an end 
joint. The element considers nonlinear axial and bending deformations. Warping torsion and 
shear deformation are not considered. The STABILITY1, R/CONCRETE1, or 
MOMCURVA1 hysteresis material model described in the previous section can be used for 
the finite segment element. The second order P-  forces are considered in the element 
stiffness matrix formulation. 

5) Plate Element (PLATE): The plate element consists of a plate linking four joints, and has 5 
degrees-of-freedom at each joint (three translational and 2 rotational). 

6) Point Element (POINT): The point element is a point consisting of a 6 x 6 stiffness matrix.  
For example, bridge foundation stiffnesses can be modeled by point elements. 

7) Brace Element (BRACE): Brace Material (BRACE) is used for this element. 
 
 

4. NONLINEAR BENDING STIFFNESS MATRIX 
 
This section describes how INSTRUCT formulates the nonlinear element bending stiffness matrix 
using five different methods, 1) Bilinear Interaction Axial Load-Moment (PM), 2) Plastic Hinge 
Length (PHL), 3) Constant Moment Ratio (CMR), 4) Finite Segment–Finite String (FSFS), and 5) 
Finite Segment–Moment Curvature (FSMC) methods. The PM, PHL, and CMR methods are simpler 
than FSFS and FSMC, with FSFS method being the most sophisticated. 

  
4.1. Bilinear Interaction Axial Load -Moment (PM) Method 
 
The bilinear moment-curvature curve shown in Figure 4.1(a) is used to generate the non-linear 
member bending stiffness matrix. The moment-curvature curve is composed of two imaginary 
components shown in Figure 4.1(b). In these figures, the slopes of the linear and elasto-plastic 



components are EIpa 1 , EIqa 2 , and 1 qp , where p is the fraction of flexural rigidity 

apportioned to the linear component and q is the fraction of flexural rigidity apportioned to the elasto-

plastic component. The post-yield slope of the elasto-plastic component is equal to zero. 
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Figure 4.1. Bilinear moment-curvature model 
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Figure 4.2. Nonlinear member 

 

The nonlinear member shown in Figure 4.2 is used to formulate the nonlinear bending member 

stiffness matrix. In the figure, i and j  are member-end total rotations; i and j are plastic 

rotations at each end of the elasto-plastic component. Based on Figures 4.1 and 4.2, the member 
stiffness matrix at any incremental step can be formulated according to the state of yield. The state of 
yield may be one of the following four conditions: (a) both ends linear, (b) i end nonlinear and j end 
linear, (c) i end linear and j end nonlinear, and (d) both ends nonlinear. For the derivation of the 
member stiffness matrix at different yield states, see reference Ger and Cheng (2011). The actual 

member stiffness matrix incorporated into the INSTRUCT program is 1212 , which includes 
bending, axial, and torsional loads for the Inelastic 3D-Beam (IE3DBEAM) element. 

4.2. Plastic Hinge Length (PHL) Method 
 
One of the popular methods used for the nonlinear pushover analysis of bridges with concrete columns 
is the Plastic Hinge Length (PHL) method. In this method, the stiffness matrix of a column is 
formulated by the combination of an elastic column element and a non-linear rotational spring 
connected at each end of the element as shown in Figure 4.3. The stiffness of the rotational spring is 
governed by the moment-rotational curve of a hinge with length pL , which is called the plastic hinge 

length. The empirical equation for pL is available, and can be calibrated using experimental data from 

large-scale test concrete columns. The member stiffness matrix can be derived (Ger and Cheng, 2011) 
using the modified slope-deflection theory. 
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Figure 4.3. Plastic hinge length method 

 
4.3. Constant Moment Ratio (CMR) Method 
 
In the CMR method, the nonlinear bending stiffness matrix is derived based on a simply supported 

structural model as shown in Figure 4.4. Given a member of length L, the end moments iM , jM , 

and the moment-curvature relationship, the end moment-rotation relationship at each end can be 
obtained by the conjugate beam theory. The element bending stiffness matrix is obtained by the 
inversion of the element flexibility matrix which is the superimposition of the elastic element 
flexibility matrix and the inelastic element flexibility matrix (Ger and Cheng, 2011).   
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Figure 4.4. Moment-rotation relationship 

4.4. Finite Segment-Finite String (FSFS) Method 
 
Another common method of nonlinear pushover analysis is the use of the distributed plasticity model. 
Using this method, a structural member (for example, a bridge column) is divided into several 
segments (Chen and Lui, 1991; Chen and Atsuta, 1977).  Each segment has 12 degrees-of-freedom 
and its cross section is divided into many finite elements (or so called finite strings) along the 
segment’s longitudinal direction as shown in Figure 4.5. When a load or displacement increment is 
applied to a member in the pushover analysis, each segment is deformed and may become partially 
plastic as sketched in Figure 4.5. The plastification of the cross section can be detected by the steel and 
concrete stress-strain relationships. For simplicity, the segment’s cross sectional plastification and 
strains are calculated based on the average curvature along the segment length. The member stiffness 
matrix is established by stacking up the segment stiffness matrix with consideration of the segmental 
instant location at each incremental step and P-  effects. For the derivation of the member stiffness 
matrix, see Ger and Cheng (2011). 
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Figure 4.5. Finite segment-sinite string (FSFS) method based on the distributed plasticity model 

4.5. Finite Segment-Moment Curvature (FSMC) Method 
 
This method is similar to the FSFS method except that the cross section of each segment is not divided 
into many elements. The segment stiffness matrix at each incremental step is calculated based on the 
cross-sectional axial load-moment-curvature family of curves from which the flexural property, EI 
(i.e. the slope of moment-curvature curve) can be obtained. The total curvature at each step is the 
accumulation of the incremental curvatures from the previous steps. Similar to the FSFS method, the 
member stiffness matrix is established by stacking up the segment stiffness matrix with consideration 
of the segmental instant location and P-  effects. For the derivation of the member stiffness matrix, 
see Ger and Cheng (2011). 
 
 
5. CONCRETE COLUMN FAILURE MODES 
 
Since most bridge columns are reinforced concrete columns, it is necessary to check all the possible 
concrete column failure modes in the pushover analysis. Possible concrete column failure modes 
include: 1) Compression failure of unconfined concrete due to the fracture of transverse 
reinforcement; 2) Compression failure of confined concrete due to the fracture of transverse 
reinforcement; 3) Compression failure due to buckling of the longitudinal reinforcement; 4) 
Longitudinal tensile fracture of reinforcing bars; 5) Low cycle fatigue of the longitudinal 
reinforcement; 6) Failure in the lap-splice zone; 7) Shear failure of the member that limits ductile 
behavior; 8) Failure of the beam-column connection joint. INSTRUCT is capable of checking all the 
possible concrete column failure modes. The analytical approaches used to check individual failure 
modes are also described in Ger and Cheng (2011).  

 
6. CONCRETE COLUMN INTERACTION CURVES 
 
The bilinear moment-curvature curves are used in the PM and PHL methods to formulate the element 
flexural stiffness matrix. INSTRUCT incorporates not only axial load-nominal moment but also axial 
load –plastic curvature capacity interactions into the stiffness matrix formulation. 
 
 
7. PERFORMANCE OF INSTRUCT 
 
Several numerical examples are provided here to examine the performance of INSTRUCT.  



Example 1 - Moment-Curvature Analysis: A column cross section and material details from the 
FHWA Seismic Design Example No. 4 (FHWA, 1996) were used here to generate the moment-

curvature curves, where: column diameter =48”; longitudinal reinforcement is 34 - #11; '
cf  =4 ksi; 

yf =60 ksi; spiral = #5 @3.5”; concrete cover = 2.63” ; and the applied axial load = 660 kips. The post 

yield modulus of the reinforcing steel stress-strain curve is assumed to be 1% of the elastic modulus. 
Figure 7.1 shows the comparison of the moment-curvature curves generated by INSTRUCT and by 
the direct cross-sectional moment-curvature analysis (SEQMC, 1998). It can be seen that the curves 
are almost identical. Also Figure 7.2 shows a comparison of moment-curvature curves of a 

318W wide flange section, generated by INSTRUCT and from Chen and Lui (1991). Good 
agreement is observed.  
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Figure 7.1. Moment-curvature curve comparison 

 

Figure 7.2. Comparison of moment-curvature curves, 
(a) by INSTRUCT, (b) Chen and Lui (1991) 

 

Example 2 – (a) Column with Rectangular Section: This example compares the numerical results with 
test results for a column specimen tested at the University of Canterbury, New Zealand (Zahn, Park, 
Priestley, 1986). The test setup and structural model are shown in Figure 7.3. In Figure 7.4, it can be 
seen that the lateral force – lateral displacement curve generated by the FSFS method is in agreement 
with the test results. (b) Column with Circular Section:  Figure 7.5 shows the full-scale column test 
conducted by the National Institute of Standards and Technology (NIST) (Stone and Cheok ,1989). 
The column is pushed by incremental displacement control at the top of the column. Good agreement 
is also observed in Figure 7.6. 
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Figure 7.3. Column with rectangular section 
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Figure 7.4. Pushover curve comparison 
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Figure 7.5. NIST 30’ full-scale column 
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Figure 7.6. Experimental and numerical 
comparison  

Example 3 – Beam-Column Joint Failure: Figure 7.7 shows the full-scale inversed cap beam-column 
test specimen #1, tested at the University of California, San Diego (Seible, Priestley, Latham, and 
Silva, 1994). The specimen was post-tensioned. The longitudinal reinforcement consists of 20 - #18 

rebars with yf = 77.5 ksi. The concrete cover is 2 in. The transverse reinforcement is #6 @ 3.5” with 

yf = 62.3 ksi. Concrete strength is cf ' = 6 ksi. The IE3DBEAM element with PHL method was used 

in the analysis. The output from INSTRUCT shows that the joint shear stress reaches the shear stress 
capacity of 0.548 ksi. The predicted joint shear failure mode is consistent with the UCSD full-scale 
test result. Figure 7.8 compares the numerical pushover curve with the test results. Good agreement is 
observed. 

 

Figure 7.7. Test specimen #1 (copied from Ref. 
Seible, Priestley, Latham, and Silva, 1994) 

0 5 10 15 20
0

100

200

300

400

500

L
at

er
a

l f
or

ce
 (

ki
p)

Lateral displacement (in)

Numerical

Experimental

 
Figure 7.8. Pushover curve for test specimen #1 

 
Example 4 – Four Column Bent: A four-column intermediate bent with circular R/C columns is shown 
in Figure 7.9. Five P/S I-girders are placed on the cap beam. The cross-sectional properties of the 

columns are: diameter = 32”; cross-sectional area = 804.25 ( 2in ); '
cf  =4000 psi; cE =3,605,000 psi; G 

= 1,442,000 psi; longitudinal bars = 18 -  #11; spiral bar = #5 @ 3” pitch; yf =60 ksi; sE =29,000 ksi; 

and plastic hinge length = 25”.  The superstructural center of the mass is 78” above the centerline of 
the cap beam. The cap beam is 42” deep and 42” wide, and assumed to be elastic. The FSFS method is 
used to find the displacement capacity of the bent by applying pushover displacement at the “master” 



joint 11 (i.e. at the superstructural mass center) in the Global Coordinate System (GCS) X  direction. 
Joints 6, 7, 8, and 9 are “slave” joints and constrained by the “master” joint. The lateral displacement 
capacity is determined when the first column confined concrete strain in the cross-sectional 

compression region reaches the ultimate concrete compression strain, cu , defined as 

)/4.1(004.0 '
ccsuyhscu ff   ( Priestley, Seible and Calvi, 1996),where s is the volumetric ratio 

of transverse steel; su is the ultimate strain of transverse steel ( su =0.09); yhf is yield stress of 

transverse steel; and '
ccf is the confined concrete strength. The output result shows that the 

displacement capacity of the bent is reached at pushover displacement of 11.88 inches at which the 
confined concrete compression strain of member 4 reaches its cu of 0.021 (Figure 7.10).  
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Figure 7.9. Four-column bent  
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Figure 7.10. Pushover curve at master joint 11 

Example 5 – Pile Cap Bent: A pile-cap intermediate bent shown in Figure 7.11 contains four steel HP 
piles, diagonal angle braces and horizontal braces. The axial load-moment interaction of the steel pile 
is considered in the pushover analysis. The steel members have yield stress of 36 ksi. The post-
buckling of brace members is considered in the analysis. The stiffnesses of the pile-soil interaction are 
modeled using POINT elements for each pile. The structural model is shown in Figure 7.12. The 

performance-based criteria for this example are as follows: Pile plastic rotation capacity, p , is 0.05 

rad. The maximum allowable brace tensile elongation is assumed to be 10 times that of the brace yield 
elongation. Find the displacement capacity of the bent by applying incremental pushover displacement 

at joint 5 in the GCS’s X direction. The output results indicate that the brace element No. 20 buckled 

first (see Figure 7.14) with corresponding pushover displacement = 0.52 in. The displacement capacity 
of the bent is reached at pushover displacement = 6.6 inches at which the elongation of brace element 
No. 22 exceeds the allowable elongation of 1.27 inches (Figure 7.13).
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Figure 7.11. Pile-cap bent 

 

GCS

Z
X

 
ex

 
ey

 
ez

5
6 7 8 9 10

1 2 3 4

11
12 13 14

15

16

17

18

 
ex

 
ez

 
ez

 
ez

 
ex  

ex

 
ex

 
ez 20

19

3

24

22

POINT ELEMENT  
 

Figure 7.12. Pile-cap bent structural model 



 

0 2 4 6 8
0

20

40

60

80

100

120

140

160

180

La
te

ra
l F

or
ce

 (
ki

p)

Lateral Displacement (in)

Displacement
Capacity

 
Figure 7.13. Pushover curve at joint 5 
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Figure 7.14. Post-buckling of brace element 20  

 
8. CONCLUSION 
 
This paper provides an overview of a new published book “Seismic Design Aids for Nonlinear 
Pushover Analysis of Reinforced Concrete and Steel Bridges” by the authors, which provides step-by-
step procedures for pushover analysis with various nonlinear member stiffness formulations ranging 
from the simplest to the most sophisticated suitable for engineers with varying levels of experience in 
nonlinear structural analysis. The authors also provide a downloadable computer program, 
INSTRUCT, that allows readers to perform their own pushover analyses. INSTRUCT checks all the 
possible concrete column failure modes in the pushover analysis. Numerous real-world examples 
demonstrate the accuracy of analytical prediction by comparing numerical results with full- or large-
scale test results. A useful reference for researchers and engineers working in structural engineering, 
this book also offers an organized collection of nonlinear pushover analysis applications for students. 
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