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SUMMARY:  
The classical problem of rocking behavior of a rigid, free-standing block to earthquake shaking containing 
significant pulses, as is the case in near-field ground motions, is revisited. A rectangular block resting on a 
perfectly rigid base is considered, subjected to a suite of idealized acceleration pulses expressed by a generalized 
function controlled by a single shape parameter. The problem is treated analytically in the realm of the linearized 
equations of motion, under the assumption of slender block geometry and rocking without slippage. Simple 
overturning criteria for different earthquake waveforms are presented in the form of dimensionless closed-form 
expressions and graphs that provide insight into the physics of the response. Two parameters are employed to 
express the results: a dimensionless pulse duration f (actual pulse duration times characteristic block frequency) 
and a dimensionless uplift strength  (ratio of minimum required acceleration for initiation of uplift over peak 
pulse acceleration).  
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1. INTRODUCTION 
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Starting with the pioneering studies by Milne (1893), Kirkpatrick (1927) and Housner (1963), the 
problem of determining the rocking response and overturning of a rigid, free-standing block to a 
ground pulse has been the subject of intense research for several decades. A basic aim of these 
investigations is the estimation of a minimum and a maximum level of ground motion intensity given 
the overturning or survival of slender blocks during an earthquake. Despite the apparently simple 
nature of the problem, solving analytically the equations of motion has proven to be a formidable task 
– even for very simple waveforms – due to the non-linear nature of the impact and the transcendental 
character of the response functions. As a result, the majority of available studies are either numerical 
(Yim et al 1980, Ishiyama 1982, Psycharis & Jennings 1983, Spanos & Koh 1984, Tso & Wong 1989) 
or experimental in nature (Priestley et al 1983, Peña et al 2007). Whereas certain mixed analytical-
numerical solutions are available (Anooshehpoor et al 1996, Zhang & Makris 2001, Dimitrakopoulos 
& DeJong 2012), to be discussed in the ensuing, pure analytical investigations leading to exact closed-
form solutions are limited to rectangular and sinusoidal pulses of half-cycle duration (Housner 1963, 
Shi et al 1996), which can induce overturning only in the forward sense (i.e., without impact). 
 
Despite the aforementioned difficulties, analytical investigations are known to be exceptionally 
valuable as they can cast light into the complex physics of the response, including certain 
counterintuitive trends observed in numerical and experimental studies. For example: (a) overturning 
of a block subjected to a particular ground motion does not imply that the block will necessarily 
overturn with decreasing size or increasing slenderness ratio (Yim et al 1980); (b) overturning of a 
block does not imply overturning for an increase in ground motion amplitude (Psycharis and Jennings 
1983) and (c) reduction in restitution coefficient, and thus increase in system damping, does not imply 
a decrease in response. The very limited number of exact analytical solutions to the problem provided 
the initial motivation for the herein-reported work. 



With reference to a free-standing rigid block subjected to a generalized waveform that can simulate an 
infinite set of symmetric pulses of half-cycle duration ranging from a perfect rectangle (“box”) to a 
perfect impulse (“spike”), an exact analytical solution is presented in this paper for the rocking 
response of the block and the conditions of overturning. It will be shown that, despite the idealized 
nature of the excitation, complex response patterns-leading to useful results-can be identified as 
demonstrated in the ensuing. 
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2. PROBLEM AND PARAMETER DEFINITION  
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The problem considered in this work involves a rigid block resting on a perfectly rigid horizontal 
plane, subjected to an idealized ground acceleration pulse acting parallel to the plane. The block, 
shown in Fig 2.1, is of rectangular shape having mass m, dimensions (2xb) by (2xh)  leading to a 
radial distance from the center of rotation to the center of gravity R = (b2+h2)1/2 and a dimensionless 
slenderness angle = tan1(b/h). The interface between the block and the rigid base is both tensionless 
and cohesionless, obeying a linear friction law characterized by a Coulomb coefficient , which is 
assumed to be sufficiently large to prevent sliding during rocking. As shown by Housner (1963), the 
dynamic characteristics of the block can be expressed by its characteristic frequency p = (3g/4R)1/2 
(measured in units of 1/Time), g being the gravitational acceleration. The dependence of the 
characteristic frequency solely on block size and gravitational action (not on mass) is analogous to the 
behavior of a pendulum – hence the term “inverted pendulum” coined by Housner for the problem at 
hand.  
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Figure 2.1. Problem considered: rocking motion of a free-standing block resting on a rigid base. 
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Figure 2.2.  Ground acceleration time history for a generalized exponential pulse of half-cycle duration. 
 

Ground excitation consists of an idealized horizontal ground acceleration pulse described by a shape 
parameter (to be discussed below), amplitude Ag (normalized amplitude ag = Ag/g) and half-cycle 
duration td. With reference to Fig 2.2, the pulse at hand is described as (Voyagaki et al 2012):  
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where H( ) denotes the Heaviside (step) function and  a shape parameter. 
 
The excitation function in Eq. (2.1) was apparently first employed by Jacobsen & Ayre (1958) for the 
investigation of linear shock spectra. Its use is extended here for the case of rocking blocks, as it can 
simulate by means of a single parameter () an infinite set of symmetric pulses (Fig 2.2). This appears 
desirable as a single solution suffices to describe dynamic response to vastly different waveforms. 
 
The following dimensionless quantities are employed to describe the results presented below: rocking 
angle θ and peak rocking angle max, uplift strength  =  /g, dimensionless pulse duration f = p td, 
time of rocking initiation l = tl /td, time of maximum response m = tm /td, critical time c = tc/td when 
(c)=.  
 
From a dimensional analysis viewpoint, given that the problem is described by 5 dimensional 
variables (i.e. m, R, g, Ag, td) and the rank of the dimensional matrix is 3 (i.e. Mass, Time, Length), 
Buckingham’s theorem suggests that 2 (= 53) dimensionless parameters (in addition to the waveform 
parameter  and the inherent dimensionless geometric parameter ) suffice for expressing peak 
rocking response. In the present study the parameters  and f are selected for this purpose. 
Accordingly one can write  
 

( , , , )max F f     (2.2) 
 
which can be established a priori i.e., without knowing the details of the solution. It should be noticed, 
however, that due to the complexity of the problem, dimensional analysis alone cannot contribute 
much more than Eq. (2.2), so tackling the equations of motion is essential. 
 
2.1. Rocking Initiation 
 
Depending on the characteristics of the excitation and the properties of the frictional interface, the 
block can either: stay still, slide (without rocking), rock (without sliding), slide and rock at the same 
time, or upthrow (Ishiyama 1982, Shenton 1996, Pompey al 1998). Our analysis focuses solely on 
rocking behavior and, thus, assumes a sufficiently large frictional coefficient so that sliding is 
prevented. To trigger rocking motion, the overturning moment due to inertial action should exceed the 
restoring moment due to gravity, which can be written as üg /g  tan α; for slenderness angles α of less 
than approximately 20 degrees (Yim et al 1980), the trigonometric argument can be dropped to give 
 

/gu g   (2.3) 

 
This criterion can be expressed in terms of the uplift strength η as follows: if η >1 no rocking occurs, if 
η <1 rocking initiates at  = l, when üg(l)  α g.  
 
Substituting into Eq. (2.1), the time of uplift can be easily obtained as 
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Evidently if uplift takes place (i.e., if <1), corresponding times for the pulses examined herein, occur 
during rising pulse (i.e. 0 1/ 2l  ). Naturally, for a rectangular pulse (β → ∞) rocking initiates at 

l = 0, and for a perfect spike pulse (β → +∞) at l = 1/2. 
 



2.2. Equations of Motion 
 
The non-linear equations governing rocking response of a rigid block are (Housner 1963) 
 

sin( ) cos( )o gI mgR mu R          ,       θ(t) > 0 (2.5) 

 
sin( ) cos( )o gI mgR mu R          ,       θ(t) < 0 (2.6) 

 
where  is the rocking angle and Io is the moment of inertia of the block with respect to the corner of 
the base (pivot point). For rectangular geometry, Io = (4 /3)mR2. The positive sign in the right-hand 
side of Eqs (2.5) and (2.6) is to ensure positive response for positive ground acceleration, as evident 
from the reference system of Fig 2.1.   
 
For slender blocks angles θ and  are small; the equations of motion can be linearized using the first-
order approximations sin(α  θ) α  θ and cos(α  θ) 1. Accordingly, Eqs. (2.5) and (2.6) can be 
cast in the compact form: 
 

 2 2 2/ sgngp p u g p         (2.7) 

 
where sgn( ) denotes the signum function. It should be noticed that the second term in the right-hand 
side of Eq. (2.7) refers to a constant, in each response branch, restoring force, whereas the second term 
in the left-hand side can be interpreted as a negative (geometric) stiffness. As mentioned in the 
Introduction, the above equation has been solved in an exact manner only for two cases: (1) a half-
cycle rectangular pulse (Housner 1963); (2) a half-cycle sinusoidal pulse (Shi et al 1996). [It is worth 
mentioning that an elegant (yet still approximate) closed-form analysis procedure for a full-cycle 
trigonometric pulse has recently been published by Dimitrakopoulos and DeJong (2012).] An attempt 
to provide analytical solutions for the earthquake waveforms in Eq. (2.1) is presented in the ensuing. 
 
 
3. SOLUTIONS 
3.1. Rocking Response 
 
For the generalized exponential pulse in Eq. (2.1), upon introducing dimensionless peak ground 
acceleration g = Ag /g and considering positive rocking angles (the only case of interest for half-cycle 
excitation),Eq. (2.7) can be cast in the form 
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which holds under uplift conditions i.e., when g >  or, equivalently, /g =  Enforcing the 
initial conditions of zero angular velocity, ( )l   0, and rotation, θ(l) = 0 at time of uplift =l  
provided by Eq. (2.4), the time histories of angular displacement and velocity are obtained as: 
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and 
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where dot denotes differentiation with respect to time (i.e., /i ix dx d , i=1, 2, 3). 
 
For the limit case of a rectangular pulse,    ; Eqs (3.2) and (3.3) simplify to 
 

( ) 1 1
( 1)(cosh( ) 1) (cosh[ ( 1)] 1) ( 1)      f f H

    
  

 (3.4) 

 
( ) 1 1

( 1)sinh( ) sinh[ ( 1)] ( 1)    


f f H
f

    
  

 (3.5) 

 
On the other hand, for a triangular pulse, 0  , Eqs (3.2) and (3.3) yield 
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Note that in the limit    , corresponding to a perfect spike pulse, both   and  are zero (no 
rocking) regardless of pulse amplitude and overall duration. 
 
3.2. Overturning Criterion 
 
For unilateral excitations like the half-cycle pulse at hand, if the response angle θ exceeds the block 
slenderness , the restoring moment due to self weight will switch into a driving moment and the 
block will overturn. Accordingly, a limit acceleration amplitude to overturn the block can be defined  
as a sufficient condition  by setting the angle θ(c) in Eq. (3.3) equal to . 
 
Enforcing this condition at the end of pulse (c = 1), corresponding to the end of the decreasing 
acceleration branch in Fig. 2.2, the following discriminant equation is obtained 
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which can be solved numerically in the form  = F(f) or f =F(). Repeating the analysis for the end of 
rising acceleration branch (c =1/2), yields the analogous expression 
 

1 1
2 2 22 22 2[( 2 )[1 (1 )] ( 2 )[1 (1 )] ] 4

f ff f

f e e f e e f f e        
  

           (3.8b) 
 
For    , referring to a rectangular pulse, Eqs. (3.8a, b) yield, respectively 
 



1 1/ cosh( )f   ,    1 1/ cosh( / 2)f    (3.9a, b) 
 
In the case of a triangular pulse ( 0  ) the corresponding expressions are 
 

21
2 ln[1 2 ( 1)]f f f

f
      ,    21

1 ln[1 ( 4)]
2

f
f f

f
       (3.10a, b) 

 
As overturning over the duration of the pulse does not represent the most critical condition for the 
system at hand, the corresponding limit criterion (safety wall) against overturning can be defined by 
the condition θ(τc) = α under zero rocking velocity, after the end of the pulse. This condition 
corresponds to instantaneous immobility ( 0)   and equilibrium ( 0)  , which can be expressed as 
 

( ) 0c    (3.11a) 
 

( ) 0c    or ( )c    (3.11b) 
 
that define a saddle point in the response  provided that ( ) 0c    at critical time = c. For the 
single-lobe pulses at hand, it is straightforward to show that the saddle point is always located at 
infinity (i.e., c   ).  
 
By virtue of Eqs. (3.2) and (3.3), the above conditions yield the closed-form solution 
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which expresses the overturning criterion for the infinite suite of pulses at hand. 
 
Considering the simple case of a rectangular pulse (), Eq. (3.12) yields  
 

1 fe    (3.13) 
 
which coincides with the solution by Housner (1963). In the same spirit, for a triangular pulse () 
Eq. (3.12) yields  
 

2
2

2 ln[2 1]
f

e
f

     (3.14) 

 
Figure 3.1 depicts the areas of safety (denoted by letter S) and overturning (denoted by letter O) as 
function of uplift strength η and pulse duration f for a rocking block under an exponential-like pulse 
obtained for a shape factor = . Evidently, for large values of uplift strength, overturning requires 
large pulse durations and vice versa. Regions O1 and O2 correspond to overturning during pulse (the 
former taking place before td/2 and the latter after td/2), whereas region O3 corresponds to overturning 
after pulse. The line separating area O2 and O3 corresponds to the solution of Eq. (3.8a) whereas the 
line separating area O3 from the area of safety S corresponds to Eq. (3.12). Finally the line separating 
areas O1 and O2 is defined by the solution of Eq. (3.8b). Corresponding results for the cases of a 
rectangular (and a triangular (pulse are provided in Figs 3.2 and 3.3. 
 



 
 

Figure 3.1.  Areas of Safety (S) and Overturning (O1 to O3) for a rocking block under an exponential pulse 
excitation of half-cycle duration (). 

 

 
 

Figure 3.2.  Areas of Safety (S) and Overturning (O1 to O3) for a rocking block under a rectangular pulse 
excitation of half-cycle duration (). 

 

 
 

Figure 3.3.  Areas of Safety (S) and Overturning (O1 to O3) for a rocking block under a triangular pulse 
excitation of half-cycle duration (). 

 



3.3. Peak Rocking Response 
 
With reference to systems that do not overturn (i.e., blocks in region S, having strength higher than η 
in Eq. 3.12), time of peak response m = tm/td, is determined from Eqs (3.3) by setting the angular 
velocity equal to zero. For systems belonging to region S1, (i.e., 1/ 2 1m  ), m is obtained by 
solving the equation 
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which can only be tackled numerically except for certain special cases (e.g.,  to be 
discussed below. 
 
For systems in region S2 (i.e., 1m  ) the following closed-form solution can be derived 
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Time of peak rocking response for the limit cases of a rectangular () and a triangular pulse 
() are provided by Eqs. (3.16) and (3.17a,b) respectively. Note that for a rectangular pulse, peak 
response always occurs during free rocking (m>1), whereas for a triangular pulse Eq. (3.17a) refers to 
1/ 2 1m   and Eq. (3.17b) to m>1.  Results are provided in Fig. 3.4. 
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Figure 3.4. Time of peak rocking response as function of uplift strength and pulse duration (region S) due to a 
half-cycle generalized exponential pulse of : (a) exponential shape () and (b) rectangular shape (∞). 



 
 

Figure 3.5. Peak rocking response (“rocking spectra”) as function of uplift strength and pulse duration (region S) 
due to a single-lobe generalized pulse of : (a) exponential shape () and (b) rectangular shape (∞). 

 
Maximum rocking response can be obtained from Eqs (3.2) and (3.15) as fraction of the slenderness 
angle α. For example, in the simple case of a rectangular pulse, maximum rocking angle is given by  
 

 (1 )cosh( ) cosh[ ( 1)]max m mf f
    


      (3.18) 

 
Figure 3.5 illustrates maximum rocking response plotted in terms of pulse duration and uplift strength. 
Evidently, systems in region S rock to angles which are smaller than . Corresponding dimensionless 
times naturally exceed 1 in all cases. Note that when θmax reaches , the system lies on the critical limit 
(safety wall), as defined by Eq. (3.12). 
 
Figure 3.6 shows the areas of safety as function of uplift strength η and pulse duration f for a rocking 
block under a generalized exponential pulse of half-cycle duration for different values of the shape 
factor ranging from –∞ (a perfect rectangle) to +∞ (a perfect spike). For large values of uplift 
strength overturning requires large pulse durations and vice versa.  

 

 
 

Figure 3.6. Areas of Safety (S) and Overturning (O) for a rocking block under an exponential pulse excitation of 
half-cycle duration for different values of shape factor . 



4. CONCLUSIONS 
 
The main conclusions of the study are: 

1. By virtue of the generalized single-lobe pulse in Eq. (2.1), novel analytical solutions for 
rocking response where derived covering an infinite number of pulses ranging from a perfect 
spike (→ ∞) to a perfect rectangle (→ ∞). 

2. It was shown that peak response and block overturning are controlled by two dimensionless 
parameters: dimensionless pulse duration f (i.e., actual pulse duration times characteristic 
block frequency) and dimensionless uplift strength  (i.e., ratio of minimum required 
acceleration for initiation of uplift over peak pulse acceleration). On the other hand, the 
absolute slenderness parameter  is not an independent variable in the realm of the linearized 
equations of motion in Eq. (2.7). 

3. Rocking response was found to exhibit complex patterns even for idealized pulses such as the 
ones at hand. Nevertheless, contrary to known counterintuitive trends observed with full-cycle 
pulses, overturning of a block subjected to a half-cycle pulse, does actually imply that the 
block will overturn with decreasing size, increasing slenderness ratio, or increasing ground 
motion amplitude. 

4. Analytical formulas were provided for the determination of the Safe (S) and Overturning (O) 
regions. Regions O may be divided into three sub-groups (Figs 3.1-3.3): Region O1 
corresponding to instability in response during the rising pulse branch, O2 corresponding to 
instability in response during the decaying branch, and O3 where critical angle is attained after 
the end of the pulse. Regions S may be subdivided into subgroups S1 for peak rocking 
response attained during pulse and S2 for peak response attained during free rocking response.  

5. Solutions for peak block rotation (“rocking spectrum”) and associated time were presented. 
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