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SUMMARY: 
To study the response of subsea buried steel pipelines surrounded by homogeneous site soils subjected to active 
strike-slip faults more accurately, an improved analytical methodology herein has been proposed by considering 
the nonlinear constitutive models of pipe steel and pipe-soil interaction. Based on the 
beam-on-elastic-foundation and elastic-beam theories, the pipe maximum axial total stress and strain are derived. 
Compared with Karamitros method, the pipe maximum axial total strains from the proposed analytical 
methodology are in better agreement with ones from the finite element analysis, and suitable for engineering 
applications due to conservative results.  
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1 INTRODUCTION 
 
Submarine pipelines have been used extensively in ocean engineering and are regarded as the lifelines 
of offshore oil and gas fields. The Bohai Sea and East China Sea are seismically active regions in 
China. Sea bed deformation during earthquakes, such as dune movement, settlement, landslide, fault 
movement, and debris flow, is one of the potential reasons for submarine buried pipeline damage. It is 
of great significance to study the seismic failure mechanism of submarine buried pipelines subjected to 
fault movements. 
 
Modern numerical techniques based on finite element method (FEM) were used to solve the problem 
by Liu et al. (2008), Gu et al. (2009), Jiao et al. (2009) and Vazouras et al. (2010) . Nevertheless, the 
numerical techniques have not been introduced into the pipeline design codes. Moreover, the 
simplified analytical models still provides a basis for preliminary design and verification of more 
complicated numerical models. 
 
Applying a small-displacement model with static soil pressure and static friction force, Newmark and 
Hall (1975) proposed an analytical method to study the effects of fault displacements on buried steel 
pipelines. Later, based on the assumption of a circle arc model, Kennedy et al. (1977) extended 
Newmark and Hall’s procedure and simulated a pipe as a cable with tension stiffness and no flexural 
stiffness. Wang and Yeh (1985) simplified a pipe subject to fault movements into a large-deformation 
beam with constant curvature and a beam on elastic foundation. Due to the constant curvature 
large-deformation beam model adopted, both of Kennedy and Wang methods overestimated the effect 
of soil resistance on pipe bending strain. Karamitros et al. (2006) improved the work of Wang and Yeh 
by using the elastic beam instead of the constant curvature large-deformation beam and considering 
the actual distribution of stresses on the pipeline cross-section and the compatibility requirement of the 
shear force at the conjunction of elastic beam and its neighboring beam on elastic foundation. The 
analytical method neglected the nonlinearity of pipe-soil interaction.  
 



Adopting the Ramberg-Osgood stress-strain relationships for pipe steel and the soil-pipeline nonlinear 
interaction models referred to American Lifeline Alliance (ALA) (2001), an improved analytical 
methodology of submarine buried steel pipelines surrounded by homogeneous site soils subjected to 
active strike-slip faults is proposed in this paper. The effect of axial force on flexural stiffness is 
considered with the clear physical meaning. 
 
 
2 CONSTITUTIVE MODELS 
 
2.1 Ramberg-Osgood stress-strain relationships of pipe steel 
 
To consider material nonlinearitiy of pipe steel, the Ramberg-Osgood model is selected to simulate the 
elastic-plasticity properties of pipe steel. The expression of the Ramberg-Osgood model is: 
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where xε  and xσ  are the engineering strain and stress; 0E  is the initial Young’s modulus; yσ  is 
the yielding stress of pipe material; n  and r  are the Ramberg-Osgood parameters; and xEtan,  is the 
tangent Young’s modulus. Since the tangent modulus is monotonic decreasing with increasing 
engineering stresses, subsequent nonlinear iteration procedure due to the difference of the Young’s 
modulus in each iterative step is assured to converge definitely.  
 
2.2 Pipe-soil nonlinear interaction 
 
The pipe-soil nonlinear interactions in the axial and lateral directions are simulated as the elastic 
perfectly-plastic soil springs recommended by ALA. 
 
 
3 SOLUTION ALGORITHM 
 
3.1 Description of problem 
 
The strike-slip fault is simplified as an inclined plane, i.e. with null width of rupture zone. As 
earthquake is a small probability event, the consolidation of backfilled soil has completed. Based on 
the concept originally introduced by Wang and Yeh (1985), the pipeline is divided into four segments 
displayed in Figure 1. Only half of the pipe structure (segment A’B) is analyzed due to the 
anti-symmetric deformation of submarine buried pipeline under a strike-slip fault. In Figure 1, point B 
is the intersection of the pipeline axis with the fault trace, where the bending moment equals to zero, 
while points A and C are the closest points of the pipeline axis from point B with zero lateral pipe-soil 
relative displacement. Points A’ and C’ are at a distance from points A and C that is sufficient for the 
attenuation of lateral pipe-soil relative displacements. 
 
The fault movement is defined in a Cartesian coordinate system, where the x-axis is parallel to the 
longitudinal axis of the undeformed pipeline, the y-axis is perpendicular to x in the horizontal plane, 
and β  is the crossing angle of the fault trace and the x-axis (Figure 1). The crossing angles applied in 
the paper is limited in the range 900 << β , which results in pipeline elongation. In Figure 1, fΔ  is 
the fault displacement. The intersection B moves one-half of fΔ . XΔ  and YΔ  are respectively the 
axial and lateral components of fault displacements in one side of fault. CL  is the length of the 



pipe-soil large deformation segment in one side of fault. Lf  and ( )xq  are the axial and lateral soil 
spring forces per unit length of pipeline, respectively. 
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Figure 1. Partitioning of buried pipelines due to strike-slip faults 
 
3.2 Axial response analysis of pipeline 
 
Geometrical elongation of pipeline is the pipe deformation obtained from geometrical compatibility 
conditions under fault movements. The geometrical elongation of pipe geoLΔ  is: 
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where L  is the pipe unanchored length defined as the pipe length where relative slippage occurs 

between the pipe and the surrounding soil. As 
L

Y
2

2Δ  is much less than XΔ , the geometrical 

elongation provoked by the lateral fault displacement component YΔ  may be neglected. 
 
Physical elongation of pipeline is the pipe deformation resulting from the integration of axial strain 
along the unanchored length of pipe. The physical elongation of pipe phyLΔ  is: 
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where xaε  is the axial strain of arbitrary point along the unanchored length. 
 
According to the axial soil reaction along the unanchored pipeline, two cases are classified. For case 1, 
soil reaction is proportional to the relative pipe-soil displacement, indicating that soil springs are in 
elastic state; for case 2, soil reaction reaches to the limit value, representing that part of soil springs 
has yielded. 
 
3.2.1 Elastic case for axial soil springs 
 
In Figure 2, point O is the closest point of the pipeline axis from the intersection B with zero axial 
pipe-soil relative displacement, L  is the pipe unanchored length, point P is the hypothetical point 
where the axial soil spring just yields, and 0L  is the pipe maximum length of the elastic segment of 
axial soil springs. The pipe elongation of segment OP is 0u , which is the yielding displacement of 
axial soil spring, i.e. the pipe-soil axial relative displacement of point P is 0u . Since the axial soil 



springs are still elastic along the pipeline, the pipe elongation of segment L  is less than or equal to 
the yielding displacement of axial soil spring, i.e. 0uX ≤Δ , 0LL ≤ . 
 
The axial soil spring force per unit length of pipe assumed to change linearly along segment 0L  is 
expressed as 
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where sf  is the maximum axial soil spring force per unit length of pipe. 
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Figure 2. Pipe axial elongation of unanchored segment 
with axial soil springs not yielding 

Figure 3. Pipe axial elongation of unanchored segment 
with axial soil springs yielding 

 
Then, the axial stress at the intersection of the pipeline with the fault trace aBσ  is: 
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where sA  is the area of pipeline cross-section, ( ) ( )tDtdDAs −=−= ππ 22

4
1 , t  is the wall thickness 

of pipe, D  and d  are respectively the pipe external and internal diameters. 0L  can be obtained by 
the relation that the pipe physical elongation of segment 0L  equals to 0u , while L  can be 
determined by the relation that physical elongation of pipeline equals to the geometrical one. Namely: 
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3.2.2 Yielding case for axial soil springs 
 
For the axial soil springs yielding, the pipe elongation of segment L  is larger than the yielding 
displacement of axial soil spring, i.e. 0uX >Δ , 0LL > . To consider the axial pipe-soil nonlinear 
interaction, the unanchored pipeline is divided into two parts shown in Figure 3, namely, 0L  and 1L . 
The axial soil springs of segment 0L  keep elastic; while the axial soil springs of segment 1L  yield 
totally. Point E is the critical point where the axial soil spring just yields.  
 



The axial stress aEσ  at the conjunction point of segment 0L  and 1L  is: 
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where 0L  is obtained by solving Eq. (3.5). 
 
The axial soil springs completely yield in the range LxL ≤≤0 , then,  
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The pipe physical elongation 1LΔ  of segment LxL ≤≤0  is: 
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Since the pipe geometrical elongation equals to the pipe physical elongation, then 
 

XLu ΔΔ =+ 10                                                            (3.10) 
 
Substituting Eq. (3.9) into Eq. (3.10), the axial stress aBσ  at the intersection of the pipeline with the 
fault trace is obtained, and the pipe unanchored length L  is calculated from Eq. (3.8). 
 
3.3 Lateral response analysis of pipeline 
 
3.3.1 Segment AA’ analysis 
 
Based on the beam-on-elastic-foundation theory and the assumption that the Young’s modulus of 
segment AA’ is the initial Young’s modulus for pipe steel due to the comparatively small deformation, 
the differential equilibrium equation of segment AA’ on the basis of the xAy  coordinate system 
shown in Figure 1 is taken as: 
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where y  is the lateral pipe-soil relative displacement, k  is the constant of the lateral soil spring, I  

is the moment of inertia of the pipeline cross-section, ( )44

64
dDI −=

π . 

 
According to the boundary conditions, 0→y  at ∞→x  and 0=y  at 0=x , Eq. (3.11) is solved: 
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where 4C  is a constant, and 4
04 IE

k
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Due to '''

A0A IyEV −= , ''
A0A IyEM −=  and '

AA y=φ , then 
 



( ) A0A 2 φλ IEM = , AA MV λ−=                                               (3.13) 
 
where Aφ , AM  and AV  are the rotational angle, the bending moment and the shear force at point A, 
respectively. 
 
3.3.2 Segment AB analysis 
 
Segment AB shown in Figure 4 is modeled as an elastic beam, supported at point A by a linear elastic 
rotational spring whose constant is calculated from Eq. (3.13) as IEC 02λ= . A uniformly distributed 
load q  is assumed to express the action of lateral soil springs.  
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where uq  is the maximum lateral soil spring force per unit length of pipe, PΔ  the yielding 
displacement of lateral soil spring. 
 

 
  

Figure 4. Sketch of elastic-beam theory in segment AB Figure 5. Sketch of bending analysis for 
elastic-beam segment 

 
Using the elastic-beam theory, the expressions for AM , AV  and BV  are obtained: 
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where tanE  is the tangent Young’s modulus of Ramberg-Osgood model for pipe steel corresponding 
to the maximum axial total stress, which can obtained by Eq.(2.2), and BV  is the shear force at point 
B. 
 
3.4 Determination of pipe maximum axial total stress 
 
3.4.1 Bending stress analysis 
 
Based on the equilibrium equation of bending moment, the bending stress 1xσ  at any point for the 
segment CLx ≤≤0  shown in Figure 5 can be taken: 
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where xM  is the bending moment of arbitrary point in the segment CLx ≤≤0 . 
 

Due to 0'
1 =xσ  and 0

2
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xσ , the position of pipe maximum bending stress is obtained as 

q
Vx B

bend = . Substitute into Eq. (3.18), then the pipe maximum bending stress is obtained as: 
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Based on the derivation from Eq. 18 and Eq. 19, CLx ≤≤ bend0  must exist, i.e. the maximum bending 
stress position is in the elastic-beam segment. 
 
3.4.2 Axial stress analysis 
 
For the axial stress analysis, two cases are classified based on the yielding condition of the axial soil 
springs. For case 1, the axial soil springs of segment CL  are still elastic (Figure 6). Referred to the 
coordinate system of Figure 6, the axial total stress tσ  of arbitrary point in the segment CL  is 
expressed as: 
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Figure 6. Sketch of axial analysis in elastic-beam 
segment with axial soil springs not yielding 

Figure 7. Sketch of axial analysis in elastic-beam 
segment with axial soil springs yielding 

 
Since the axial soil springs are elastic along the whole pipeline, the bending stress 1xσ  is dominant 
compared with the axial stress xaσ . According to 0'

t =σ  and 0"
t <σ , the position of pipe maximum 

axial total stress is determined, then the maximum axial total stress of pipeline is obtained as: 
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For case 2, the axial soil springs yield totally. Since segment AB is close to the intersection of the 
pipeline axis with the fault trace and very short, the axial soil springs of the segment are assumed to 
yield (Figure 7). By superposition of the bending and axial stresses, the axial total stress tσ  of 
arbitrary point in segment CL  is expressed as: 
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Based on 0'
t =σ  and 0

2
"
t <−=

I
Dqσ , the position of pipe maximum axial total stress is obtained, then 

the maximum axial total stress of pipeline is calculated as: 
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From the further analysis, 
q

Vxx B
bendmax0 =≤≤  exists, i.e. the position of pipe maximum axial total 

stress locates between the maximum-bending-stress point and the maximum-axial-stress point.  
 
 
4 VALIDATION AND EXAMPLE ANALYSIS 
 
4.1 Validation of proposed methodology 
 
To validate the proposed methodology, analytical predictions are compared with the results from 
Karamitros method and three-dimensional non-linear FE analyses using ADINA (2008). The 
pipe-shell element length is 1 m, and each element has 4 nodes. To simulate pipe-soil nonlinear 
interaction, two ends of each element are connected to axial, lateral and vertical soil springs modeled 
as elastic perfectly-plastic spring elements. 
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Figure 8. Effects of fault displacements on pipe maximum axial total strain 
 
Based on the parameters of Karamitros’s paper (2006), the results from FEM, Karamitros method and 
proposed method are shown in Figure 8. With increasing fault displacements, the pipe maximum axial 
total strains from Karamitros method are less than those from numerical method and non-conservative, 
while the results from the proposed method are in better agreement with those from numerical method 
and conservative at the larger fault displacements.  
 
4.2 Effects of seabed soils 
 
A submarine buried steel pipeline is selected, featuring the outside diameter of 1.32 m, the wall 
thickness of 19.06 mm, and the total length of 1200 m. The pipe steel is the API SPEC 5L X60 type, 
and the properties from the Indian standard (2007) are listed in Table 4.1.  
 
The properties of soil springs are calculated according to the ALA guidelines (2001) listed in Table 
4.2, assuming that the pipeline centerline is buried under 1.98 m of silty sand with cohesion 0 kPa, 
internal friction angle 33  and unit weight 19.2 kN/m3, which is a typical shallow seabed soil. 
Another two typical shallow seabed soils are adopted as follow: the very soft silty clay with cohesion 14 



kPa, internal friction angle 0  and unit weight 17.5 kN/m3 and the clay with cohesion 42 kPa, internal 
friction angle 0  and unit weight 17.29 kN/m3. The coating dependent factor relating the internal 
friction angle of the soil to the friction angle at the soil-pipe interface f  is 0.7. The fault movement 

=fΔ 10 m is statically applied with the crossing angle, β =30° and 70°, respectively. 
 

Table 4.1. Parameters of Ramberg-Osgood stress-strain curve for API SPEC 5L X60 pipe steel 
Parameters Values 
Initial Young’s modulus ( 0E ) 2.1e5 MPa 
Yielding stress ( yσ ) 413 MPa 
n  10 
r  12 

 
Table 4.2. Soil spring properties 

Soil kinds Soil spring parameters Yielding force
N/m 

Yielding displacement 
m 

Axial soil springs 2.42e4 4.00e-3 
Transverse soil springs 1.98e5 1.06e-1 
Vertical uplift soil springs 2.71e4 2.97e-2 silty sand 

Vertical bearing soil springs 1.15e6 1.32e-1 
Axial soil springs 5.90e4 9.00e-3 
Transverse soil springs 1.02e5 1.06e-1 
Vertical uplift soil springs 5.55e4 2.64e-1 Very soft silty clay 

Vertical bearing soil springs 1.16e5 2.64e-1 
Axial soil springs 1.69e5 8.00e-3 
Transverse soil springs 3.07e5 1.06e-1 
Vertical uplift soil springs 1.66e5 1.98e-1 Clay 

Vertical bearing soil springs 3.06e5 2.64e-1 
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Figure 9. Effects of fault displacements on pipe 
maximum axial total strain ( °= 30β ) 

Figure 10. Effects of fault displacements on pipe 
maximum axial total strain ( °= 70β ) 

 
For the three typical shallow seabed soils, the variations of pipe maximum axial total strains with fault 
displacements from the proposed methodology are displayed in Fig. 9 and Fig. 10. With increasing 
fault displacements, the peak values of pipe axial total strain are very different for the different seabed 
soils. Compared with the silty sand and very soft silty clay, the peak values of pipe axial total strain for 
clay site are largest due to the strongest constraints on pipelines and pipe-soil interaction, and it goes 
against the seismic resistance of submarine buried steel pipelines across strike-slip faults. 
 
 
5 CONLUSIONS 
 
Considering the nonlinearity of soil-pipeline interaction, an improved analytical methodology of 
submarine buried steel pipelines surrounded by homogeneous site soils across active strike-slip faults 



is proposed in the paper. Based on the beam-on-elastic-foundation and elastic-beam theories, the pipe 
maximum axial total stress and strain are derived.  
 
Compared with Karamitros method, the pipe maximum axial total strains from the proposed analytical 
methodology are in better agreement with the FE ones and suitable for engineering applications due to 
conservative results. 
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