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structural and site-related characteristics that certainly contributed to prolonged shaking that was most 
likely unbearable to occupants of the building. Records from KIKNET station OSKH02, the closest 
free-field station to the building, is used to infer and confirm site characteristics computed from 
geotechnical logs. Reconnaissance observations related to the Great East Japan earthquake main shock 
are outside the scope of this paper. 

Long-period responses of structural systems at large distances have been observed for many 
earthquakes, and in particular for tall buildings. One of the earliest observations in the United States 
was during the M=7.3 Kern County earthquake of July 7, 1952, that shook many taller buildings in 
Los Angeles and vicinity, about 100-150 km away from the epicenter 
(http://earthquake.usgs.gov/earthquakes/states/events/1952_07_21.php, last accessed July 15, 2011; 
Hodgson, 1964). The March 28, 1970, M=7.1 Gediz earthquake in inland western Turkey damaged 
several buildings at a car-manufacturing factory in Bursa, 135 km north west from the epicenter  
(Tezcan and Ipek,1973). One of the most dramatic examples of long-distance effects of earthquakes is 
from the September 19, 1985, Michoacan, Mexico, M 8.0 earthquake during which, at approximately 
400 km from the coastal epicenter, Mexico City suffered more destruction and fatalities than the 
epicentral area due to amplification and resonance (mostly around 2 sec) of the lakebed areas of 
Mexico City (Anderson and others, 1986, Çelebi and others, 1987). To the best knowledge of the 
authors, there are no publicly available records of the responses of tall structures from these past 
earthquakes. However, records obtained from numerous instrumented tall buildings during the 
Great East Japan earthquake of March 11, 2011 offer a rare opportunity to study and understand 
how structures characterized by predominantly long-period responses behave during medium to large 
events originating at long-distances. Such effects have consequences for large metropolitan areas in 
Japan, but also in other parts of the world, including the United States (e.g., Los Angeles area from 
Southern California earthquakes, Chicago from NMSZ and the Seattle (WA) area from large Cascadia 
subduction zone earthquakes). For example, the recent M=5.8 Virginia earthquake of August 23, 2011 
was felt in 21 states of the Eastern and Central U.S., that include large cities such as New York and 
Chicago (http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/se082311a/#summary, last 
accessed July 15, 2011). 

 

2. RECORDED BUILDING RESPONSES AND LONG DURATION OF STRONG SHAKING 
 
The earthquakes studied in this paper and the peaks of motions of the records are summarized  in 
Table 1. Figure 1 shows  the locations of the epicenters of events with respect to the building. All of 
the events occurred at shallow depth (< 40 km). The large epicentral distances are again noted. 

An accepted indicator of strong-shaking duration is the interval between the 5% and 95% levels of 
the cumulative sum of squared acceleration values (Trifunac and Brady, 1975).  From the cumulative 
sums of acceleration for the downhole components of the KIKNET station OSKH02 (Figure 2) the 
duration of strong shaking for the mainshock in the vicinity of the building is about 140 s.  

 
3. THE BUILDING, ITS FOUNDATION, AND INSTRUMENTS 
 
The 256 m tall building (55 stories plus 3-story basement) is located on a reclaimed island near Osaka, 
Japan. The vertically irregular building has a steel-moment frame and a rigid truss beam every 10 
stories. There are no shear walls around the several elevator shafts that would add to the lateral 
stiffness of the building.  The building is founded on end-bearing piles that are approximately 60-70 
m long and rest on a diluvial gravel layer. The pile designs include friction in the upper alluvial clay 
layers of the subsurface.  The construction of the building was completed in 1995 and therefore was 
designed according to pre-1995 codes (before the M=6.9 Kobe earthquake of 16 January1995). 

Vertical sections of the building with general dimensions and locations of tri-axial accelerometers3 are 
shown in Figure 3. Principal axes of the building are identified as X (229° clockwise from N) and Y 

                                                            
3 The instruments were installed by Building Research Institute, [http://smo.kenken.go.jp/]. 
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motion with a small peak acceleration in the order of only 3% g. Therefore, in light of the substantial 
drift ratios under the low peak input motions experienced during this earthquake, the risk from closer 
large-magnitude earthquakes that could subject the building to larger peak input motions should be 
assessed. Immediate remediation to improve the behavior of the building by applying response 
modification technologies (e.g., adding dampers at select bays and floors) should be considered.  
 
The instrumentation in the building should be denser.  Deployment of additional sensors on different 
floors would facilitate better correlation and identification analyses. Finally, the behavior and 
performance of this particular tall building far away from the strong shaking source of the Great East 
Japan event of 2011 should serve as a reminder that, in the United States as well as in many other 
countries, risk to such built environments from distant sources must always be considered. 
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