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SUMMARY:  
Performance-Based Earthquake Engineering (PBEE) aims to quantify the seismic performance and risk of 
engineered facilities using metrics that are of immediate use to both engineers and stakeholders. A recent bridge 
performance-based analysis framework using the PEER platform OpenSees with a three-dimensional (3D) 
ground-foundation graphical user interface was developed to assess repair costs for a number of seismic isolation 
and supporting soil profile configurations. The paper aims to exercise and develop this framework highlighting 
the potential beneficial effect of isolation devices in reducing the bridge repair cost and time quantities. In 
particular, the study is concerned with a 90 meter long, single-column, two – span bridge. Several configurations 
of abutments and column connections with isolation devices are presented. The beneficial contribution of the 
isolation technique is assessed under different supporting soil profile deformability conditions.  
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1. INTRODUCTION 
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Performance-Based Earthquake Engineering (PBEE) is a new methodology based on the concept of 
design for prescribed performance rather than the more traditional prescriptive approaches, developed 
by the Pacific Earthquake Engineering Research (PEER) Center (http://peer.berkeley.edu). PEER 
contributed to theoretical development, applications in academia and industry, and also to the 
inclusion of precepts into the next generation of building/design codes (Cornell and Krawinkler 2000). 
This methodology applied to buildings has seen rapid development (FEMA-350, 2000; FEMA-356, 
2000; ATC 58, 2007; ATC 63, 2007; TBI Guidelines Working Group, 2010), while relatively few 
attempts have been proposed in the bridge and infrastructure arena.  
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Recently, Mackie and co-workers have pioneered the development of a bridge performance-based 
analysis framework (Mackie et al., 2008; Mackie et al., 2010a) adopting the numerical PEER platform 
OpenSees (http://opensees.berkeley.edu). A list of performance groups (PGs) is defined based on 
commonly used repair methods and aggregation of decision data, mainly taken from typical pre-
stressed, single-column bent, multi-span, box girder bridges in California. Damage to these PGs was 
tied to explicit repair procedures and repair quantities that could then be used for cost estimation and 
repair effort necessary to return the bridge to its original level of functionality. Using this analysis 
framework, other PEER researchers considered the pile-pinning effect at the abutments (Ledezma and 
Bray, 2008) and the increase in repair costs due to the presence of a liquefaction-susceptible soil 
profile (Kramer et al., 2008). Simultaneously, Elgamal and co-workers (Elgamal et al., 2003, 2008, 
2009, Lu, 2006; Lu et al., 2006, Elgamal and Lu, 2009) had embarked on development of OpenSeesPL 
(http://cyclic.ucsd.edu/openseespl), a graphical user interface for three-dimensional (3D) ground-
foundation systems applying OpenSees as the finite element (FE) analysis engine. OpenSeesPL 
includes pre- and post-processing capabilities to generate the mesh, define material properties and 
boundary conditions, allowing the execution of pushover and seismic single-pile or pile-group ground 
simulations.  
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The present work is based on a recently developed bridge PBEE user interface (Lu et al., 2010; 
Mackie et al., 2010b, http://peer.berkeley.edu/bridgepbee/), thanks to the recent effort born from the 
application of the above earlier developments. The paper aims to exercise the underlying analysis 
framework highlighting the beneficial effects of several configurations of abutments and pier (column) 
connections with isolation devices at the top of the column and at the abutment supports, in reducing 
the bridge repair cost/time. A study is conducted, focused on the longitudinal behaviour that might be 
provided by several isolation device configurations. First of all analyses are performed with fixed-base 
conditions (i.e., Soil-Structure-Interaction or SSI neglected). The response is assessed in terms of 
repair cost and time quantities such as Crew Working Days (CWD) and the total repair cost ratio (the 
ratio between the cost of repair and the cost of the new construction). Finally, taking into account the 
main bridge response parameter (column top displacement), the study is expanded to include SSI, with 
supporting soil profiles of different stiffness and strength configurations.  
Blank line 11 pt 
In the following sections, the employed PBEE methodology is described. The parametric study (fixed 
conditions) and its results are presented in sections 4 and 5. Bridge response for the three employed 
soil profile conditions is then presented in section 6.  
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2. PBEE METHODOLOGY 
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The methodology (Mackie et al., 2008, 2010a) is subdivided to achieve performance objectives stated in 
terms of the probability of exceeding threshold values of socio-economic decision variables (DVs) in the 
seismic hazard environment. The PEER PBEE framework is fundamentally based on the application of 
the total probability theorem to disaggregate the problem into several intermediate probabilistic models 
that involves intermediate variables, such as repair items or quantities (Qs), damage measures (DMs), 
engineering demand parameters (EDPs), and seismic hazard intensity measures (IMs).  
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Consequently, the applications of this methodology are very general, since the possible variables that can 
be taken into consideration depend on the objectives that the decision makers choose to refer to. For 
example, probabilities of exceeding an EDP such as strain can be useful for engineers, owners may 
choose to refer to economically-oriented variables such as probabilities of exceeding a DV, while 
decision makers may be interested in repair time and cost quantities. In this regard, an important step in 
the damage and repair assessment is the definition of Performance Groups, based on the association of 
the various structural and non-structural components, using the most common repair methods. 
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Finally, the EDPs are computed directly from the ensemble of time history analyses performed and 
automatically associated with the PGs and the DVs. The data used to populate the relationships that 
associate EDPs to DMs and DMs to Qs is presented in Mackie et al. (2008) and the numerical 
implementation of the methodology inside the interface (Lu et al., 2011) is described in Mackie et al. 
(2010a). 
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3. PBEE ANALYSIS 
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PBEE analysis can be organized into the major components: definition of Ground Motion Input, Bridge-
Ground Finite Element Model and Definition of Performance Groups and Quantities, respectively shown 
in the next subsections. 
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3.1. Ground Motion Input 
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The framework can employ any type of user-specified input motion. In particular, in this study all the 
motions are taken from the PEER NGA database (http://peer.berkeley.edu/nga/). They consist of 100 
selected ground motions to be representative of seismicity in typical regions of California. They are 
divided into 5 bins of 20 motions each, with the two main characteristics: moment magnitude (Mw) and 
epicenter distance (R), for more details, see Mackie, Lu and Elgamal (2010b). 
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3.2. Bridge-Ground Finite Element Model 
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The investigate model, representative of the prevalent ordinary construction types for new California 
bridges, is a 90 m long, 2-span structure, supported on one circular column (1.22 m diameter) 12 m long, 
6.71 m above grade (Fig. 3.1). The deck is 11.9 m wide and 1.83 m deep, and the weight is 130.30 kN/m. 
Each abutment is 25 m long with 30000 kN as total weight. In particular, the reinforced concrete column 
is modeled with nonlinear beam-column elements and fiber cross section. The deck is modeled with five 
separate elastic beam-column (BC) elements and the approach ramps make the connection with the 
longitudinal boundaries (Fig. 3.2). The interface (http://peer.berkeley.edu/bridgepbee/) allows the 
implementation of several support mechanism at the abutments. In this study no additional resistance of 
the soil (at large relative bridge-abutment displacement) is considered. For more details see also as 
Elgamal et al. (2011). Four isolated bridge configurations are compared. The first two consist of simple 
roller link connections between the deck and the abutments (MODEL 1 and MODEL 2), as illustrated in 
a previous study (Elgamal et al. 2012). The other two cases (MODEL 3 and MODEL 4) were developed 
from a modified version of the interface allowing the implementation of simple elastic springs between 
the deck and the top of the column (in order to simply represent presence of a base isolator).  
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Figure 3.1. Bridge Definition for the case study 
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Figure 3.2. Mesh Definition (http://peer.berkeley.edu/bridgepbee/) 
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3.3. Definition of Performance Groups and Quantities 
PBEE methodology assesses the damage and repair, grouping the various structural and non structural 
components into PGs. Each group contains a collection of components that reflect global-level indicators 
of structural performance that contribute significantly to repair-level decisions. The interface is built with 
11 PGs (Mackie, Lu and Elgamal, 2010b), representative of typical bridge schemes and used in this 
study. For each performance group, discrete damage states (DS) are defined, and each of these has a 
subset of different repair quantities (Qs), associated for a given scenario. The interface is built with 29 Qs 
(Mackie, Lu and Elgamal, 2010b) and they were applied to the present study. In particular, the total 
repair cost can be generated through a unit cost function that is based on the Qs. Finally, for each Q, an 



estimate of the repair effort can be obtained through a production rate. More information on the 
derivation of the default DSs, Qs, unit costs, and production rates can be found in Mackie et al. (2008). 
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4. PARAMETRIC STUDY 
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A parametric study with various longitudinal stiffness values was performed in order to evaluate the 
longitudinal resistance that might be provided by four different configurations. The employed simple 
elastic models to represent seismic isolation are roughly representative of real high damping rubber 
bearing response commonly used in professional bridge engineering applications. In particular, the 
LRN500X130 isolator (=4%, G=0.9 MPa, D = 500 mm) from ALGA (http://www.alga.it) is considered 
in this study. The four structural configurations (MODELs) consist of:   
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MODEL 1. Bridge with no Isolation devices: the column and the deck are rigidly tied together and the 
abutments give no resistance to the bridge deck displacement (roller support at the abutment 
locations);  
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MODEL 2. Isolated Abutments: the abutments are connected to the deck with one elastic longitudinal 
spring (KLA= 4000 kN/m) to model the presence of two isolation devices (LRN500X130);  
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MODEL 3. Isolated Column: 5 isolation devices (LRN500X130) on the top of the column (KLC =  
10000 kN/m) and no resistance between the abutment and the deck (as in Model 1);  
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MODEL 4. Double Isolation: 5 isolation devices (LRN500X130) on the top of the column (KLC =  
10000 kN/m) and one elastic longitudinal spring (KLA= 4000 kN/m) to account for the presence of 
two isolation devices (LRN500X130) at the abutment locations.  
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Fig. 4.1. And Table 4.1 present the four configurations adopted in the study. In particular, the 
fundamental shape modes and frequencies are shown in Fig. 4.2, Fig. 4.3 and Table 4.2. 
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Figure 4.1. Schematic of the model with elastic springs  
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Table 4.1. Data for MODEL Stiffness  

 KLA 
[kN/m] 

KLC 
[kN/m] 

ISOLATION 

MODEL 1 0 fixed No isolation 
MODEL 2 4000 fixed On abutment 
MODEL 3 0 10000 On column 
MODEL 4 4000 10000 On abutment & 

On column 
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Figure 4.2. 1st Shape Mode, MODEL1 (scale: 200) 
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Figure 4.3. 2nd Shape Mode, MODEL1 (scale: 100) 
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Table 4.2. Data for MODEL Natural Periods (First and Second) 

 T1 
[s] 

T2 
[s] 

MODEL1 0.80 0.50 
MODEL2 0.75 0.38 
MODEL3 2.32 0.53 
MODEL4 1.67 0.38 
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5. PBEE RESULTS FOR FIXED BASE CONDITION (NO SSI) 
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This section illustrates the results in terms of Total Repair Cost Ratio and Time considering fixed-base 
conditions, neglecting soil structure interaction as a first reference study. Due to the assembly-based 
(vector) nature of the method applied, and according to the total probability theorem, it is possible to 
disaggregate the results (repair costs and time) into individual contributions. The developed user 
interface (Lu et al. 2010, 2011, Mackie et al. 2010b) can compute directly several figures that summarize 
the different disaggregated quantities. In particular, the main contribution to Total Repair Cost and Time 
is shown to be the longitudinal column displacement and the relative longitudinal deck-abutment motion 
(Fig. 5.1 and Fig. 5.2). These two values contribute to the Total Repair Cost Ratio and Time results 
represented in Fig. 5.3 and 5.4 where the beneficial effect of the isolator devices are shown to be 
expected for low values of Peak Ground Acceleration (PGA).  
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Figure 5.1. Expected repair cost – G1: Max Long. Drift Ratio (Column) 
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Figure 5.2. Expected repair cost – G3: Max Long. rel. Deck end/ Abut. displacement 
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Figure 5.3. Total Repair Time (Crew working Days, CWD) 
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Figure 5.4. Total Repair Cost (%)  
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6. SOIL DEFORMABILITY EFFECTS  
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In this section, the column maximum displacement for 3 soil profile conditions with increasing 
deformability (Table 6.1) are reproduced, corresponding to three representative input motions (Table 6.2 
and Fig. 6.1-6.3) defined along the soil mesh base in the longitudinal direction (x-axis). The main 
modelling parameters include standard clay-soil (Von-Mises, multi-yield surface plasticity model) 
properties such as shear, bulk modulus and cohesion. The soil mesh base boundaries were modeled using 
the penalty method in order to ensure fixed conditions. Shear beam assumptions were considered along 
the vertical soil mesh boundaries in the longitudinal direction (along the 10m soil profile depth).  
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Figures 6.4-6.6 show model response for the three soil conditions with the three input motions. The 
results are compared with the previous fixed-base case (with no Soil Structure Interaction). In this 
regards, it is possible to assess how the soil deformability modifies the column deformation profile 
considerably. In particular, the soil flexibility causes the column displacement to increase. Generally, this 
displacement assessment is a basis for verifying the positive effect of isolation on column deformability 
and on the entire system performance, as presented in section 5. For illustration, Fig. 6.7 and 6.8 show 
MODEL1 (soft clay) 3D mesh deformation (plan and 3D view) for CAP motion at t = 6.50 sec.  
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Table 6.1. Employed soil properties (hyperbolic shear stress-strain curve, with hysteretic response) 

 Soft Clay Medium Clay Stiff Clay 
Mass density (t/ m3) 1.3 1.5 1.8 

Reference shear modulus (kPa) 1.3∙104 6.0∙104 1.5∙105 
Reference bulk modulus (kPa) 6.5∙104 3.0∙105 7.5∙105 

Cohesion (kPa) 18 37 75 
Strain at peak shear strength 0.1 0.1 0.1 
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Table 6.2. Input motions  

 A-KOD CAP RRS 
PGA (g) 0.154 0.511 0.852 

PGV (cm/s) 18.76 34.76 160.055 
PGD (cm) 6.09 9.088 29.613 
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Figure 6.1. A-KOD input motion  
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Figure 6.2 CAP input motion  
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Figure 6.3 RRS input motion  
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Figure 6.4. Column maximum deformation for different soil conditions (motion: A-KOD)  
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Figure 6.5. Column maximum deformation for different soil conditions (motion: CAP)  
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Figure 6.6. Column maximum deformation for different soil conditions (motion: RRS)  
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Figure 6.7. MODEL1 (soft clay) - PLAN view (3D mesh) - SCALE 1:500 
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Figure 6.8. MODEL 1 (soft clay) 3D view (3D mesh) - SCALE 1:500 
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8.  CONCLUSION 
The study conducted in this paper may be viewed as a pilot investigation to present an overall PBEE 
analysis framework for a simple single-column bridge-abutment with several idealized seismically-
isolated configurations. The first part of this study highlighted the main parameters that contribute to 
Total Repair Cost and Time as the column and abutment displacements. Thereafter, three representative 
motions were applied to illustrate the impact of three ground profile configurations with increasing 
deformability in order to assess the soil contribution to the overall system response.  
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The investigations demonstrate the potential of this numerical formulation in assessing the beneficial 
effects of an implemented base isolation technique. The results offer insights to improve bridge seismic 
reliability assessment in the presence of deformable soil conditions, thus providing a basis for future 
analysis, management of computational resources, and investment in more refined models. In this 
regards, two main aspects may be investigated further. First, the effect of transversal response has to be 
taken into account in order to analyse and investigate a more realistic scenario. Second, further 



applications would focus on further elaborate descriptions of the soil domain and the structure itself. In 
particular, an important step lies in the implementation of non-linear behaviour models including the 
rotational components for the isolation devices. Finally, analysis with soil-structure interaction for 
liquefaction-induced response situations may be also of value.  
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