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SUMMARY: 
A new formulation, named a simple two-dimensional formulation, is presented for the two-dimensional 
liquefaction analysis. Three-dimensional constitutive model is required even in two-dimensional analysis in the 
plane strain condition, but two-dimensional constitutive model can be used in the new formulation, which makes 
analysis very simple. Difference between them appears in the definition of mean stress; it is average of two 
normal stresses. The formulation is made by keeping the S wave and P wave velocities are same with that in the 
three-dimensional analysis. Then the bulk modulus becomes different from the ordinary definition. In addition, 
several differences appear between elastic constants. A case study is made at the Akita port damaged during the 
1983 Nihonkai-chubu earthquake and showed significant difference of excess porewater pressure generation 
compared with the plane strain analysis. 
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1. INTRODUCTION 
 
Since the space is originally three-dimension, an analysis of the ground is to be ideally made in a 
three-dimensional space. There are several difficulties, however, in making the three-dimensional 
analysis. For example, computer power is not sufficient in the practical use, and the soil data for the 
three-dimensional analysis is difficult to obtain because it is costly. Therefore, a one-dimensional 
analysis is the most popular method and a two-dimensional analysis is carried out to a special case 
such as an important structure. 
 
The plane strain condition and the plane stress condition are well known assumption to make the 
two-dimensional analysis. These methods work to reduce the number of unknown variables, but it 
requires a three-dimensional constitutive model because the normal stress perpendicular to the plane 
of the analysis exists in the plane strain condition, and the normal strain perpendicular to the plane of 
the analysis exists in the plane stress condition. The plane strain condition is relevant in the 
two-dimensional analysis of the ground among these two two-dimensional formulations; therefore it is 
focused on in this paper. 
 
The normal stress perpendicular to the plane appears in two places. 
 
The one is in the yield condition, but it can be escaped. The Mohr-Coulomb yield criterion, for 
example, is frequently used in the analysis of soil, which uses three normal stresses. In the practice, 
however, the stress perpendicular to the plane of analysis is frequently neglected as it usually becomes 
middle principal stress. Therefore, a three-dimensional constitutive model is not necessary if this 
normal stress is not considered in the constitutive model. 
 
Another place is evaluation of the mean normal stress, which is necessary to evaluate the strength and 
elastic moduli based on the principle of effective stress. Therefore, three-dimensional constitutive 



model is necessary in the liquefaction analysis in which evaluation of the mean normal stress is 
necessary. 
 
Using a three-dimensional constitutive model is, however, troublesome work in the engineering 
practice and use of two-dimensional constitutive model is more preferable. It can become possible to 
evaluate the mean stress as sum of two normal stresses in the plane of consideration. In other word, if 
we consider the pure two-dimensional plane, we can use a two-dimensional constitutive model. This 
condition is named a simple two-dimensional condition in this paper, and the formulation in this 
condition is presented with a case history of the liquefaction analysis of the damaged quay wall during 
the 1983 Nihonkai-chubu earthquake. 
 
 
2. THREE DIMENSIONAL FORMULATION 
 
The stress-strain relationships are usually defined as follows by using the Young's modulus E and the 
Poisson's ratio ν. 
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where coefficient matrix [D] is expressed as 
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Here, the shear strain is not a tensor strain but an engineering strain. This equation is used as the 
fundamental equation in this paper. In the analysis of the ground, this equation is frequently expressed 
by using the bulk modulus K and the shear modulus G, because both the volumetric change and the 
shear deformation are primary interest in the geometrical analysis. This equation is written as  
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In the liquefaction analysis, quantities related to the volumetric change (confining stress or mean stress 
σm and volumetric strain εv), the one-dimensional rebound modulus B, the Poisson's ratio ν, and the 
coefficient of earth pressure at rest K0 are important. Here, as all the stresses in this paper is effective 
stresses, prime which is usually used to distinguish the effective stress from the total stress is not used. 
In addition, K0 is defined under the one-dimensional compression loading of the elastic material. They 
are defines as follows: 
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Here, one-dimensional rebound modulus is important because it is directly related to the P wave 
velocity Vp as 
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where ρ denotes density. 
 
 
3. TWO-DIMENSIONAL FORMULATION 
 
When considering a constitutive model in the two- dimensional space, the volumetric change 
characteristics is to be expressed as 
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This equation is derived by setting σz=0 and εz=0, and replace 3 into 2 in Eq. (2.6), but it is impossible 
because both stress and strain cannot be specified at the same time. Under the plane strain condition, 
for example, σz is not zero as εz is zero. This indicates that the framework of the constitutive model is 
different from the three-dimensional space when Eq. (3.1) is used. In order to emphasize it, tilde,"~", 
is put above the variable. 
 
Then the problem occurs how to obtain the elastic moduli from the conventional elastic moduli. It is 
clear that the bulk modulus K defined in the three-dimensional space cannot be used instead of K . 
When deriving the conversion equation, it is important to consider what quantities are same both in the 
three-dimensional space and in the two-dimensional space. There are three elastic moduli that are 
frequently used in the engineering practice, which are E, K, and G. Among them, we assume that E 
and G are the same in the three- and two-dimensional analyses, in order to keep the S wave and the P 
wave velocities are same in two formulations. 
 
Three strains are set zero in the plane strain condition because displacement in the direction 
perpendicular to the plane of interest does not occur, i.e., εz=γyz=γzx=0. Relationships that τyz=τzx=0 are 
automatically derived. Then the stress-strain relationships yields, 
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Since σz is not zero but changes in the plane strain condition, the constitutive model is essentially to be 
defined in the three-dimensional space. 
 
The stress σz is included in the confining stress and the yield condition. Under the assumption that the 
middle principal stress does not affect the yielding, however, σz does not appear in the yield condition. 
This assumption is used in many constitutive models, and is accepted widely. Therefore, only the 
difference between Eqs. (2.6) and (3.1) remains. 
 
The normal stresses σx and σy are expressed from Eq. (2.1) as 
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Then we obtain sum of the normal stresses as 
 

(1 )
( ) ( )

(1 )(1 2 ) (1 )(1 2 ) (1 )(1 2 )x y x y x y

E E Eν νσ σ ε ε ε ε
ν ν ν ν ν ν

 −+ = + + = + + − + − + − 
 (3.4) 

 
The relation among ν, E, and G is known to be expressed as 
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in the three-dimensional space. These terms including the Poisson's ratio yields 
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Substitution of this equation into Eq. (3.3) results in 
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Therefore we obtain the sum of the normal stresses as 
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This is the fundamental equation in the simple two-dimensional formulation. 
The bulk modulus K  in the simple two-dimensional formulation is obtained by comparing Eqs. (3.1) 
and (3.8) as 
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and the Young's modulus is obtained by means of G and K  as 
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Finally we obtain the coefficient of the normal stress-strain relationships in Eq. (3.8) as 
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Then the stress-strain relationships are obtained as 
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The one-dimensional rebound modulus B is obtained as 
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This definition is same with the three-dimensional analysis. It means that the P wave velocity is same 
with that in three-dimensional analysis, which is the reason why we used the same Young's modulus E 
for both three-dimensional and two-dimensional analyses. 



 
The normal stress is written as 
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Here, the following equation is obtained by putting σx=0 
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Therefore, the Poisson's ratio for the simple two-dimensional formulation yields 
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On the other hand, the following equation is obtained by putting εx=0, 
 

( ) , ( )x y y yK G K Gσ ε σ ε= − = +   (3.17) 

 
Therefore, the coefficient of earth pressure at rest K0 yields 
 

0K ν=   (3.18) 
 
 
4. AN EXHIBITING EXAMPLE 
 
The Akita port located at the O-hama district, Akita city, which was damaged during the 1983 
Nihonkai-chubu earthquake, is analysed to show the difference between the plane strain condition and 
the simple two-dimensional condition. Figure 1 shows cross-section of the port (Iai and Kameoka, 
1993). 
 
The constitutive model is composed with shear deformation, volumetric change characteristics and 
stress-dilatancy model. The multi-spring model (Yamazaki et al, 1985) is used for shear deformation, 
and incremental elastic model is used for volumetric change characteristics. Finally, a generalized 
stress-dilatancy model is used to consider dilatancy effect (Ohya et al., 2009).  
 
Figure 2 shows modeling of the structure in Figure 1. This model is once analyzed by Ohya (Ohya, 
2009). The bulk modulus K is evaluated under the plane strain condition as 
 

( )
( )

2 1

3 1 2

G
K

ν
ν

+
=

−
 (11) 

 
When the theory based on the simple two-dimension, this equation yields 
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Figure 1. Cross-section of Akita port and damage caused by earthquake 
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Figure 2. FEM mesh 
 

 
 

Figure 3. Excess porewater pressure ratio at the end of analysis 
 
The sheet pile quay wall, steel pile and tie rod are modelled into beam element. The intersection 
between the pile and soil element is modelled so that horizontal displacements are same, but vertical 
displacement is free to each other. Excess reduced integration scheme (one-point Gauss integration) is 
used for water so that it resists only volume change (Ohya et al., 2010). On the other hand, improved 
integration scheme is used for soil element (Ohya and Yoshida, 2008) in order to escape from volume 
locking. 
 
Mechanical properties used in the analysis are summarized in Table 1. The bulk modulus under 
simple two-dimensional condition is about 1.15 times larger than that under the three dimensional or 
plane strain condition. 
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255



Figure 3 shows excess porewater pressure ratio at the end of the analysis. All fill below the water 
table liquefied. In addition, Original sand ground just in front of the quay wall also liquefied, which 
makes quay wall to move toward the sea easier. 
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(a) Element 255 (near steel pile) 
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(b) Element 263 (back of quay wall) 
Figure 4. Typical behavior of elements 

 
Table 1. Mechanical properties 
 Sand 1 Sand 2 Sand 3 Clay 
ρ (t/m3) 1.8 2.0 2.0 1.7 
n 0.8 0.8 0.8 0.8 
G0 (kN/m2) 33800 33800 72200 74970 

K  (kN/m2) 84500 84500 180500 187430

K (kN/m2) 73230 73230 156430 156430
σm0 (kN/m2) 50 50 110 140 
sinφf 0.602 0.602 0.656 0.629 
hmax 0.3 0.3 0.3 0.3 
ν 0.3 0.3 0.3 0.5 
Note) Sand 1: Fill above the water table; Sand 2: Fill below the water table; Sand 3: Sand; Clay: Holocene clay; 

ρ: density; n: porosity; G0: elastic shear modulus; K : bulk modulus under simple shear condition; K: bulk 
modulus; σm0: reference confining stress; φf: internal friction angle; hmax: maximum damping ratio; ν: Poisson’s 
ratio 
 
Figure 4 shows the behavior of two elements, which locates near the steep pile (element 255) and 
backfill ground (element 263). Both elements completely liquefy. The behaviors are quite similar 
between the simple two-dimensional analysis and a plane strain analysis. However, it is also noted that 
the simple two-dimensional analysis liquefies earlier than the plane strain analysis.  
 
 
5. DISCUSSION 
 
The stress-strain relation derived in this paper does not include the third stress σz and the third strain εz, 



because formulation is made in the pure two-dimensional space. The final form of the stress-strain 
relation is obtained as Eq. (3.12). This formulation is called a simple two-dimensional formulation in 
order to distinguish from other formulations. As G is kept constant between the three- and 
two-dimensional analyses, Lame's constant λ changes keeping μ (=G) constant if the stress-strain 
relationships are written by means of the Lame's constants. Among the elastic moduli frequently used 
in the engineering practice, only the bulk modulus and the Poisson’s ratio are different from the 
conventional ones, which can be evaluated from the conventional elastic moduli as shown in Table 2. 
The S wave and the P wave velocities are hold in the new formulation. However, the bulk modulus 
includes shear modulus; it changes according to the nonlinear shear deformation of soil in exact sense. 
In the practical situation, however, this change may be neglected in order to make the analysis simple 
when the change of the shear modulus is not significant. 
 
In the engineering practice, shear modulus is usually obtained with easy test such as, for example, the 
PS logging. On the other hand, the bulk modulus is difficult to evaluate. Therefore, it is frequently 
obtained by assuming a relevant Poisson's ratio and the bulk modulus is evaluated from the Poisson's 
ratio and the shear modulus. Here, the Poisson's ratio 1/3 is frequently assumed because the coefficient 
of earth pressure at rest becomes 0.5. However, in the simple two-dimensional formulation, the 
Poisson's ratio is to be 0.5 in order to make the coefficient of earth pressure at rest to be 0.5. The 
Poisson's ratio is close to 0.5 under nearly no volumetric change condition in the three-dimensional 
analysis whereas it is 1.0 under the simple two-dimensional analysis. 
 
In the computer program in making the two-dimensional analysis, the normal stress perpendicular to 
the plane of analysis may not be output even when the plane strain condition is used. It means that the 
user cannot recognize whether the analysis is made by the plane strain condition or by the simple 
two-dimensional condition. The method to evaluate the elastic moduli is different between two 
formulations. Therefore, the engineer needs to check the formulation that he is going to use.  
Since the bulk modulus in the simple two-dimensional analysis is larger than that in the three 
dimensional analysis, excess porewater generates earlier in the simple two-dimensional analysis. This 
can be probed through the case history. 
 
Table 2. Conversion of elastic modulus for simplified two-dimensional formulation 
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6.  CONCLUDING REMARKS 
 
A new formulation named a simple two-dimensional formulation is presented. This formulation is 
necessary when the effective confining stress is evaluated from the two normal stresses working in the 
plane of analysis. It is essential for soil to consider the effective stress dependency of the elastic 
moduli as well as shear strength because of the effective stress principle. Therefore, three-dimensional 
formulation becomes necessary in the constitutive models that use three normal stresses in defining the 
effective confining stress. On the other hand, the simple two-dimensional analysis presented here 
makes the development of the constitutive models very simple as it uses only two normal stresses 
working in the plane of the analysis.  
 
The S wave velocity and the P wave velocity are same with that in the three-dimensional analysis in 
this formulation, but the bulk modulus includes shear modulus only in this formulation. There are 
some differences between two formulations. Therefore, some notes are necessary to use this 
formulation. 
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