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SUMMARY: 
In this paper the seismic collapse capacity of multi-story moment resisting frame structures with stiffness and/or 
strength discontinuities is assessed. The considered structures with non-deteriorating element behaviour are 
vulnerable to the P-delta effect. The impact of various structural parameters on earthquake induced global 
collapse is discussed. In particular, it is evaluated, whether the recently developed collapse capacity spectrum 
methodology may be applied to structures with irregular stiffness and/or strength distribution. Additionally, three 
alternative modelling strategies for the columns and beams are evaluated. In several example problems the 
results of the collapse capacity spectrum methodology are set in contrast with outcomes of Incremental Dynamic 
Analyses. 
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1. INTRODUCTION 
 
Building collapse prevention under catastrophic seismic events is one of the primary goals of 
earthquake engineering. In the most general approach computer time history analysis tools are used to 
predict collapse of mechanical models, which should represent sufficiently accurate the real building, 
and in particular, its (inelastic) behaviour under severe earthquake excitation. The disadvantage of this 
approach is the computational effort needed for e.g. Incremental Dynamic Analyses (IDAs). In 
particular, in an early stage of the design process computer time is sparely available, and therefore, it 
is desirable to have simplified procedures available to assess the collapse capacity fast but sufficiently 
accurate. 
 
An excellent overview on the state-of-the-art in seismic collapse prediction and simplified approaches 
provides Villaverde (2007). Simplified procedures are based on various approximations, such as 
equivalent single-degree-of-freedom (ESDOF) systems and/or the application of nonlinear static 
(pushover) analyses. In a recently proposed collapse assessment procedure Shafei et al. (2011) 
combine these methods to assess moment-resisting frame and shear wall structures. Thereby, the 
global pushover curve is approximated by a trilinear curve, and in combination with structural 
parameters a closed-form equation is used to estimate the median collapse capacity and the dispersion 
from aleatory uncertainties. 
 
In this paper the emphasis is on P-delta induced collapse. A recently developed simplified procedure 
(Adam and Jäger, accepted for publication) for the assessment of the collapse capacity of non-
deteriorating moment resisting frame structures vulnerable to the destabilizing effects of gravity loads 
is summarized. This procedure is based on an ESDOF system with parameters derived from global 
pushover curves. In contrast to the procedure of Shafei et al. (2011) in this approach bilinear 
approximations of pushover curves with and without gravity loads are used, and the collapse capacity 
is determined in combination with collapse capacity spectra. In the present study emphasis is on 
structures with discontinuities in strength and stiffness. 



2. COLLAPSE CAPACITY 
 
2.1. Definition 
 
The maximum ground motion intensity, at which a given structural system still maintains dynamic 
stability, is referred to as seismic collapse capacity. Different ground motions lead to different collapse 
capacities because of the record-to-record variability (Krawinkler et al. 2009). For the present study 
collapse capacity CCi is defined as:  
 

th ground motion

1( , 0.05)
i

a
i

collapse

S T T
CC

g




 
  (2.1) 

 
Sa is the normalized 5% damped spectral acceleration at the fundamental structural period 1T  of the 
considered ground motion record identified by subscript i. g is the acceleration of gravity, and  
denotes the base shear coefficient, defined as the ratio of the yielding base shear yV  to the total weight 
W  of the structure, yV W  . Most generally, the computationally IDA procedure (Vamvatsikos and 
Cornell 2002) is used to determine CCi . To capture the record-to-record uncertainties the IDA 
procedure is not only applied for the ith ground motion but for a set of representative ground motions, 
and subsequently the collapse capacities are statistically evaluated. In the present study, 44 ordinary 
ground motions described in the ATC 63 report are used (FEMA P-695 2009). Sorting of the collapse 
capacities CCi (i = 1, …, 44) in increasing order yields the associated collapse fragility curve, which 
describes the probability of collapse for a given ground motion intensity. Ibarra and Krawinkler (2005) 
have shown that the collapse capacities are distributed log-normally, and thus, only median, 16th 
percentile and 84th percentile value are necessary to fit a suitable analytical curve to the data points. 
 
2.2. Collapse Capacity Spectrum Methodology 
 
The authors have recently presented a fast and yet accurate methodology to predict the collapse 
capacity of planar regular non-deteriorating moment resisting frame structures vulnerable to P-delta 
induced structural collapse (Adam and Jäger 2011; Adam and Jäger, accepted for publication), which 
can be used alternatively to the IDA procedure. The methodology avoids computationally expensive 
time history analyses. Instead, ESDOF systems based on global pushover curves of the actual structure 
with and without P-delta effect, in combination with simple charts, referred to as collapse capacity 
spectra, are used to predict the global collapse capacity. Subsequently, the key points of this procedure 
are summarized (Adam and Jäger, accepted for publication). 
 Based on a first mode horizontal load pattern derive global pushover curve of the considered 

multi-degree-of-freedom (MDOF) structure with applied gravity loads. If the post-yield stiffness is 
negative, derive also the global pushover curve without considering gravity loads. Determine the 
global collapse capacity as subsequently described. 

 Perform a bilinear approximation of the pushover curves and identify the global hardening ratio 
S , and the elastic and inelastic stability coefficient e  and i , respectively, compare with 

Fig. 2.1(a). 
 Derive from S , e , and i an auxiliary unique stability coefficient a  (Adam and Jäger 2011), 
 

1
i e S

a
e i S

  


  



  

 (2.2) 

 
 and determine the negative post-yield stiffness ratio a S  . 
 Select a shape vector   for the displacements of the MDOF system with N stories affine to the 

fundamental mode to transform the structure into an ESDOF system, and derive the period aT  of 
the ESDOF system (Adam and Jäger 2011), 
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Figure 2.1. (a) Pushover curves with and without P-delta of a frame structure and their bilinear approximations. 
(b) Median collapse capacity spectra (Adam and Jäger 2012) 
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The roof displacement at onset of yielding Nyx  and the corresponding base shear yV  can be read 
from the pushover curve without considering gravity loads, compare with Fig. 2.1(a). i  is the ith 
component of  , and im  denotes the ith story mass. 

 Consult the appropriate collapse capacity spectrum with respect to the underlying ground motion 
set, viscous damping  , hysteretic loop, and the negative post-yield stiffness a S  , and read at 
the period aT  the median collapse capacity CCd as shown in Fig. 2.1(b). Analytical relations for 
CCd can be found in Adam and Jäger (2012). 

 Transform CCd into the domain of the ESDOF system (Adam and Jäger, accepted for publication): 
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This outcome is an estimate of the actual median collapse capacity, MDOF ESDOFCC CC . MDOF  
is the transformation coefficient and results from the transformation of the MDOF structure into 
the ESDOF system.  

 Determine the 16th percentile and 84th percentile collapse capacities 16p
ESDOFCC  and 84p

ESDOFCC  
utilizing relations specified in Adam and Jäger (2012) and determine the collapse fragility curve 
under the assumption of a log-normal distribution (Ibarra and Krawinkler 2005). 

 
 
3. CONSIDERED BASE-CASE FRAME STRUCTURE 
 
In the present study generic moment resisting frame structures are considered. These 18-story single-
bay frames have a uniform story height h, and uniform lumped masses 2Sm  are assigned to each 
corner node, as shown in Fig. 3.1(a). In the model the columns are elastic, and the beams rigid, both 
equipped with bilinear hysteretic springs at the ends, compare with Fig. 3.1(b). The springs have a 
hardening coefficient   = 0.03. Justification of this choice is given in chapter 4.1, where different 
modelling assumptions are evaluated. In the base-case frame the strength of the springs is tuned to 
obtain in a pushover analysis simultaneous onset of yielding at all springs under a first mode 
horizontal load pattern. For each story the second moment of area of the columns and the beam is 
equal. The ith story stiffness iK  is given by the relation 
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Figure 3.1. (a) Generic frame model. (b) Bilinear hysteretic spring behaviour. (c) Story stiffness distribution of 
generic frame structures and real frames according to ATC 76-1 report (ATC 76-1 2010) 
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where 1K  is the stiffness of first story, and N the number of all stories (here N = 18). The absolute 
stiffness is chosen to obtain a fundamental period of 1 3.60T  s. In Fig. 3.1(c) a black bold solid line 
depicts the stiffness distribution according to this relation. This figure also shows in grey lines the 
distribution of the story stiffness of real 8, 12, and 20 story moment resisting frame structures designed 
according to ATC 76-1 report (ATC 76-1 2010). It is evident that relation (3.1) represents adequately 
the story stiffness distribution of real frames. Note that the relative story stiffness resulting in a 
straight-line first mode is smaller than the one described by Eqn. (3.1). The relative stiffness for a 
frame with uniform stiffness distribution is for all stories one. These limit cases are depicted in 
Fig. 3.1(c) by thin solid black lines. Each frame corner is subjected to the gravity load / 2Sm g . 
Rayleigh damping of 5% is assigned to the fundamental mode and that mode, at which the sum of the 
modal masses exceeds 95% of the total mass. To this base-case frame in selected stories stiffness 
and/or strength discontinuities are assigned to study their effect on the collapse capacity and its 
prediction. 
 
 
4. RESULTS 
 
All results presented hereinafter have been calculated using the software framework OpenSees 
(McKenna et al. 2004) for both Incremental Dynamic Analyses and pushover analyses, respectively. 
 
4.1. Frame Modelling Strategies 
 
At first the impact of structural modelling on the collapse capacity and its prediction using the collapse 
capacity spectra methodology is studied. Three different basic beam/column element models are 
evaluated. In Fig. 4.1 for each considered basic element the model ID, the symbolic element 
representation, the moment-rotation-relationship of the element, and the moment-rotation-relationship 
of the rotational springs at the ends of each element are depicted. The models exhibit properties as 
described below. 
 Model M1 is a linear elastic element. In the study it is used only for columns in a structure 

perfectly designed according to the strong column–weak beam concept. When using this model 
for the columns, at the base a rotational spring must be provided, because otherwise no collapse 
mechanism can occur. 
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Figure 4.1. Modelling strategies for beam and column elements. Overview 
 
 In model M2 all elastic and inelastic properties of the element are assigned to the rotational 

springs at the both ends of the element, whereas the element itself is considered to be rigid. This 
model may capture the development of plastic hinges. A disadvantage of this model is that the 
spring stiffness must be defined a priori, which is a constant regardless of the (changing) moment 
gradient in the element. For details see Ibarra (2003). 

 To avoid this drawback Ibarra and Krawinkler (2005) suggest to keep the beam/column element 
elastic, and to add rotational springs at the ends, whose rotational stiffness is 10 times stiffer than 
the rotational stiffness of the elastic beam element. In model M3 two elastic elements are 
connected in series, and thus, the properties of the parameters can be calibrated according to the 
“real” behaviour.  

 
Subsequently, eight base-case frame structures are analyzed, using different element models for the 
beams and/or columns in an effort to evaluate all possible and meaningful combinations of the three 
basic models. Additionally, for the beams a distributed plasticity model (denoted as d.p.) is utilized, 
with 10 integration points along the element axis and a moment-rotation-relationship as shown in 
Fig. 3.1(b). The considered column/beam element combinations are M1/M2, M1/M3, M2/M2, 
M2/M3, M3/M2, M3/M3, M2/d.p., and M3/d.p. Fig. 4.2(a) shows for all considered structures median 
IDA curves based on the ATC63-FF record set. One can observe that for small intensities and 
moderate plastic deformations all models predict the same median peak displacement of the roof. All 
frames composed of column-models M2 and M3 collapse at an intensity of approximately 

1( , 0.05) / ( )aS T T g    = 3.0, because plastic hinges in the columns lead to a plastic mechanism. 
The frames designed according to the strong column-weak beam concept (model M1 for the columns) 
exhibit a pronounced larger collapse capacity, emphasizing the importance of a large ratio of column 
to beam strength. For comparison, also IDA curves for frames with beams composed of distributed 
plasticity models are shown. It can be concluded that both models M2 and M3 with appropriate 
springs can be used for the beams without influencing substantially the collapse capacity predictions. 
 
In Fig. 4.3(a) the corresponding first mode pushover curves considering gravity loads are displayed. 
Frames designed according to the strong column-weak beam concept exhibit a favourable post-
yielding behaviour. The pushover curves of these frames exhibit a constant negative slope in the 
inelastic range of deformation, because no plastic hinges develop in the columns. The pushover curves 
depicted by red solid lines correspond to structures with columns composed of element model M2. 
The results of Fig. 4.3(a) reveal that this model option overestimates the post-yield stiffness, because 
in the stiffness matrix of element M2 no translational stiffness terms do exist. That is why the higher 
modes of models based on column elements M2 do not coincide with the ones of the corresponding 
unlimited elastic model. For example, the period of the 5th mode is about 15% lower than the actual 



one of the elastic model. However, when for the columns element M3 is used, the actual structural 
behaviour is reproduced. Thus, in the studies of chapter 4.2 element M3 is utilized for the columns, 
while for simplicity the beams consist of element M2 without introducing significant errors. 
 
Fig. 4.2(b) depicts for the considered structures the “exact” median collapse capacities obtained from 
IDAs with black bars, the corresponding estimated values CCd based on the collapse capacity 
spectrum methodology are given in grey. It is readily seen that for frames composed of the unlimited 
elastic column model M1 the collapse capacity spectrum methodology overestimates the “real” 
collapse capacity. In contrast, in all other examples, where columns may exhibit plastic hinges, the 
collapse capacity spectrum methodology underpredicts the collapse capacity. However, for all 
considered structures the maximum difference is 16% compared to the outcomes from IDAs. 
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Figure 4.2. (a) Incremental dynamic analysis of generic frames with different element modelling.  
(b) Comparison of median collapse capacities based on IDAs and on the collapse capacity  

spectrum methodology 
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Figure 4.3. (a) Global first mode pushover curves with P-delta effect for frames with different element models. 

(b) Bilinearization of one pushover curve 
 
The collapse capacity spectrum methodology is based on bilinear approximations of the pushover 
curves. In the considered examples this bilinearization is straight forward for the frames designed 
according to the strong column-weak beam concept. However, the pushover curves of the frames with 
plastic hinges in the columns do not exhibit a uniform slope in the post-yield range of deformation, as  



can be seen from Fig. 4.3(a). Exemplarily, in Fig. 4.3(b) the global pushover curves with and without 
gravity loads of the 18-story frame composed of column/beam models M3/M2 are depicted. The sharp 
kink in the pushover curve without gravity loads can be led back to particular tuning of the spring 
strengths as described in chapter 3.1. For this example the roof yield displacement is 0.54Nyx  m, and 
the corresponding base shear is 61.66x10yV  . Additionally, the bilinearized pushover curve is shown 
by a solid blue line, using the method of least squares to determine the slope of the line of best fit. 
 
4.2. Effect of Stiffness and Strength Discontinuities 
 
The fundamental assumption of the collapse capacity spectrum methodology is that the dynamic 
behaviour of the actual MDOF structure can be represented by an ESDOF system. This assumption is 
questionable, if the structure exhibits irregularities and discontinuities in story strength and/or story 
stiffness. Therefore, subsequently the impact of soft stories is evaluated. According to Chen and Lui 
(2005) a “soft story” does exist, if 
 the lateral stiffness of a story is 70% or less than that in the story above, or 
 less than 80% of the average stiffness of the three stories above. 

 
In the following, the collapse capacity of altogether thirty different frame structures is evaluated. The 
considered frames exhibit a stiffness discontinuity, a strength discontinuity, or a combined 
stiffness/strength discontinuity. The discontinuity is 60% of the initial stiffness and/or strength of the 
corresponding base-case frame, and it is imposed to the first, third, fifth,…, seventeenth floor, 
respectively. Accordingly, also the base springs are modified (denoted by “00”). As an example, 
Fig. 3.1(c) shows the stiffness distribution of a frame with a soft story in the 11th floor. 
 
Fig. 4.4(a) shows median IDA curves of various 18-story generic frame structures with combined 
stiffness and strength discontinuities. In the legend of this figure the story number indicates the 
affected story. For comparison, a solid black line depicts the median IDA curve of the original base-
case frame with continuous stiffness and strength distribution. It can be seen that frames with a 
structural discontinuity at the base, first floor, and third floor exhibit a smaller median collapse 
capacity than the original undisturbed frame. The frame with a soft first story has the smallest median 
collapse capacity of about CCIDA = 2.0 compared to CCIDA = 3.0 of the original frame. In all other 
frame structures the discontinuity does not reduce significantly the median collapse capacity, because 
P-delta affects primarily the lower stories, where the gravity loads are largest. 
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Figure 4.4. (a) Median IDA curves of generic frames with combined stiffness/strength discontinuities in 
different stories. (b) Corresponding global first mode pushover curves with P-delta effect 
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Figure 4.5. Deformed first mode pushover profiles of the (a) base-case frame, (b) frame with reduced  
base spring stiffness and strength, (c) frame with reduced stiffness and strength of the first, (d) third,  

(e) fifth, and (f) seventh floor 
 
Fig. 4.4(b) shows the corresponding global pushover curves, which are the basis of the collapse 
capacity spectrum methodology. The pushover curve of the frame with a first story soft floor exhibits 
the lowest global strength and poorest global ductile behaviour. The higher the structural 
discontinuity, the larger the global strength, and the better the ductile behaviour. If the soft story is in 
the fifth floor, the global structural behaviour is superior, also compared to the original base-case 
frame. Stiffness and strength discontinuities above the seventh floor do not affect the global pushover 
curve considerably. To support and justify these observations in Fig. 4.5 the corresponding deformed 
shapes of the frames at a base shear of 800000 N (in the post-elastic domain) are depicted. Fig. 4.5(a) 
shows the displacement profile of the original undisturbed frame, Figs 4.5(b)-4.5(f) represent the 
profiles of frames with a stiffness/strength discontinuity at the base (b), the first (c), third (d), fifth (e), 
and seventh (f) floor. Red and green circles identify a plastic hinge, the size of these circles depends 
on the actual ductility. In the base-case frame the plastic rotations are concentrated in the lower stories. 
The plastic rotations are amplified in frames with a discontinuity in the lower levels. If the structural 
irregularity is located in the fifth floor, a partial mechanism evolves in first five floors, with more or 
less uniform plastic rotations at the beam ends. No plastic hinges occur in the columns until the fifth 
floor, and thus, energy is dissipated more uniformly in these lowest stories compared to the frames of 
Figs 4.5(a)-4.5(d). As shown in Fig. 4.5(f), a stiffness and strength reduction of 40% in the seventh 
floor does not lead to the formation of such a favourable mechanism as in the frame with soft fifth 
story. Here, the mechanism is similar as in the base-case frame. Thus, the global pushover curves of 
the frames with structural discontinuities in the higher levels coincide with the curves of the base-case 
structure. It is emphasized that the presented results strongly depend on the frame geometry and on the 
actual strength and/or stiffness reduction. 
 
In Fig. 4.6(a) the median collapse capacity of the considered frames with both stiffness and strength 
discontinuity is plotted against the location of the discontinuity. The “exact” median collapse 
capacities (from IDA procedure) are displayed in black, while the estimated counterparts based on the 
collapse capacity spectrum methodology are displayed in grey. In most cases the simplified collapse 
capacity prediction is conservative. It is striking that the difference between the exact and estimated 
collapse capacity is almost constant. However, for the frame with discontinuity in the fifth floor, the 
collapse capacity spectrum methodology yields a slightly unconservative collapse prediction. This is 
the effect of the favourable local mechanism, which leads to a smaller auxiliary stability coefficient a 
compared to the other frames, see Fig. 4.6(b). Therefore, when applying the collapse capacity 



spectrum methodology it is suggested to check additionally the deformed profile of the first mode 
pushover analysis whether it is P-delta characteristic. I.e., the plastic hinges are located in the lower 
stories, and no partial plastic mechanism develops, as in the example of Fig. 4.5(e). P-delta 
characteristic deformed shapes are shown in Figs 4.5(a), 4.5(b) and 4.6(c). 
 
In Fig. 4.7(a) median collapse capacities (black lines) from IDAs and their estimated counterparts 
(grey lines) based on the collapse capacity spectrum methodologies are shown for the base-case frame 
and for frames with structural discontinuities in the specified story. Thereby, frame structures are 
considered, where either the stiffness or the strength is reduced in selected stories, additionally to 
structures with a combined reduction of strength and stiffness. The results reveal that a strength 
reduction in the lower stories is more crucial than a stiffness reduction. A discontinuity in the upper 
stories is less crucial, and the median collapse capacities are close to ones of the original undisturbed 
base-case frame. 
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Figure 4.6. (a) Comparison of median collapse capacities based on IDAs and on the collapse capacity spectrum 

methodology for the frame subset with both stiffness and strength discontinuities. (b) Significant ESDOF 
parameters for the collapse capacity spectrum methodology 
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Figure 4.7. (a) Comparison of median collapse capacity prediction based on IDAs with results from the collapse 
capacity spectrum methodology. (b) Ratios of these predictions 

 
 
 
 



In Fig. 4.7(b) the ratio of the simplified determined median collapse capacity to the median collapse 
capacity based on IDAs is plotted against the location of the discontinuity. It can be seen that for the 
structure with strength discontinuity in the fifth floor the collapse capacity spectrum methodology 
overestimates the median collapse capacity by about 12%. For most of the other structures the 
simplified method underpredicts collapse by about 10%. 
 
 
5. SUMMARY 
 
It could be shown that the collapse capacity spectrum methodology can be applied also for planar 
frame structures that exhibit distinct irregularities in story stiffness and/or story strength. Thus, the 
assumption that the pushover curve represents the mechanism, which may develop in the P-delta 
vulnerable structure during a severe earthquake, is confirmed. Furthermore, it was shown that a 
structural discontinuity in the upper floors does not affect significantly the global collapse capacity. 
The results of this study confirm that rigid elements equipped with elastic-plastic rotational springs at 
the ends model sufficiently accurate the beam behaviour of the considered P-delta sensitive frame 
structures. In contrast, in the mechanical model the columns should be composed of elastic elements 
with elastic-plastic rotational springs at the ends to reflect appropriately the inelastic mechanism, 
which may lead to global collapse. 
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