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ABSTRACT:  
Real-time testing provides a viable experiment technique for performance evaluation of structures with rate-
dependent devices. Explicit integration algorithms are usually preferred over implicit algorithms in real-time 
testing since no iterations are required. Conditional stability of conventional explicit algorithms however has 
significantly restricted their application in real-time structural testing. Recently, an unconditionally stable 
explicit integration algorithm has been developed and successfully implemented for real-time testing. An 
important property of this explicit algorithm is the dependence of its integration parameters on properties of the 
structure to be solved. This brings concern when applying this algorithm in real-time testing since the structural 
properties might not be accurately known before the tests or vary during the tests. This paper presents an 
robustness analysis of the effect of estimated structural properties on the stability and accuracy of this algorithm 
for real-time testing. Numerical simulations of structures are conducted to demonstrate the effectiveness of 
presented study. 
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1. INTRODUCTION 
 
Structural testing is important for earthquake engineering research when the structure or its 
components are difficult to model. Different testing methods have been developed by researchers, 
such as quasi-static testing method, pseudodynamic testing method, hybrid (substructure) testing 
method and shake table testing method. Application of these testing methods has significantly 
contributed to structural engineering research [Oliva et al. 1990; Zhang and Ricles 2006; Fahnestock 
et al. 2007]. For quasi-static testing and shake table testing methods, the command displacement for 
the servo-hydraulic actuators are usually predefined based on the user-defined loading protocol or 
selected ground motion; while for pseudodynamic testing and hybrid testing methods the command 
displacements are computed on-line by solving the equations of motion of the prototype structure 
using a numerical integration algorithm. The stability and accuracy of the integration algorithm are 
therefore vital for a stable and reliable pseudodynamic/hybrid test. Analysis of integration algorithms 
for pseudodynamic testing has been conducted by researchers [Shing and Vannan 1991; Shing et al. 
1991]. Recently, innovative energy dissipation devices have been investigated by researchers to 
improve seismic performances of civil engineering structures, such as the magneto-rheological (MR) 
dampers [Yang et al. 2002]. To realistically evaluate these devices requires the structural tests to be 
conducted at a real-time scale. The pseudodynamic testing and hybrid testing methods are therefore 
extended to real-time scale, i.e., real-time pseudodynamic testing and real-time hybrid testing 
methods, which will be referred to as real-time testing methods in this paper.  
 
Unlike the conventional pseudodynamic and hybrid testing methods, the command displacements in a 
real-time test are imposed at a real-time scale by servo-hydraulic actuator(s) to the experimental 
structure(s) and therefore have to be available at the beginning of each integration time step. This 
renders the explicit integration algorithms to be preferred over the implicit algorithms in real-time 



testing. However, the commonly used explicit integration algorithms such as the central difference 
method and the Newmark explicit method are only conditionally stable and therefore have a restriction 
on the time step size due to numerical stability. When the total number of degrees of freedom of the 
structural system becomes large, high natural frequencies can exist and controls the time step size for 
stability. An extremely small time step value will make the implement of the integration algorithm 
difficult for real-time testing using the state-of-the-art servo-hydraulic equipment. Implicit integration 
algorithms however are usually unconditionally stable and have also been investigated for real-time 
testing [Shing 2002; Chen and Ricles 2011]. Implementation of an implicit algorithm however 
involves larger amount of computation when compared with explicit integration algorithms.  
 
To advance the application of real-time testing for structural engineering research, a new 
unconditionally stable explicit integration algorithm was developed by Chen and Ricles [2008a]. By 
applying the discrete control theory, the explicit CR algorithm is shown to be unconditionally stable 
for linear elastic structures and nonlinear structures with softening behavior when the linear elastic 
structural properties are used for the integration parameters [Chen and Ricles 2008b]. The 
characteristics of explicitness and unconditional stability make the CR integration algorithm appealing 
for conventional pseudodynamic testing as well as for real-time testing. Lin et al. [2008] applied the 
explicit CR integration algorithm to the pseudodynamic testing of a four-story four-bay self-centering 
moment resisting frame. A static test was conducted to estimate the stiffness matrix of the 
experimental structure. The experimental results are shown to have a good comparison with the 
numerical analysis using OpenSees [Seo et al. 2008]. Chen et al. [2009] applied the CR algorithm in 
real-time hybrid tests of moment resisting frame with an elastomeric damper. The equivalent damping 
and stiffness of the rate-dependent elastomeric damper near the first natural frequency of the structure 
was accounted for in the integration parameters. The experimental results were compared with that 
using the HHT α-method with a fixed number of substep iterations and good agreement was observed.  
 
An important property of the explicit CR algorithm is that its integration parameters are dependent on 
the structural properties instead of being constants. This requires estimating the properties of 
experimental structure before the tests. Since the mass and inherent viscous damping are usually 
analytically defined in a pseudodynamic or hybrid test, it is reasonable to assume that their accurate 
values are used in real-time tests. However, the restoring force related structural stiffness may not be 
estimated easily and accurately. Moreover, when the real-time testing method is used to simulate the 
structural response to an earthquake, the experimental structure may develop nonlinearity during the 
test, leading to stiffness degradation. This poses challenges to the application of CR algorithm for real-
time testing and requires a systematic analysis of the influence of estimated structural stiffness on the 
CR algorithm in real-time testing for structural research. This present study serves this objective 
through numerical analysis of the explicit CR algorithm for real-time testing when estimated structural 
properties are used. 
 
2. Unconditionally Stable Explicit CR Integration Algorithm 
 
A single degree-of-freedom (SDOF) system subjected to an excitation F(t) as shown in Fig. 2.1 is used 
for the analysis in this paper. The differential equation of motion can be written as 
 

 tFtrtxctxm  )()()(   (2.1) 
 
where m and c are the mass and inherent viscous damping of the SDOF system, respectively; and r (t) 
is the restoring force of the spring. When the spring is linear elastic, the restoring force can be 
calculated as )()( txktr  , where k is the linear elastic stiffness of the spring and x(t) is the 

displacement response of the SDOF system. The natural frequency and damping ratio of the SDOF 

system can be determined as mkn /  and )2/( nn mc   . For real-time testing, a numerical 

integration algorithm is used to solve the temporally discretized equation of motion as follows  
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In Eq. (2.2) 1ix  and 1ix  are the velocity and acceleration of the SDOF system at the (i+1)th time 

step, respectively; ri+1 and Fi+1 are the restoring force of the spring and the external excitation at the 
(i+1)th time step, respectively.  
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Figure 2.1 Schematic of real-time pseudodynamic testing of a SDOF system 

 
The variation of displacement and velocity over the time step for the explicit CR integration algorithm 
[Chen and Ricles 2008a] are defined as 
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where Δt is the integration time step; ix  and 1ix  are the displacement response of the SDOF system at 

the ith and (i+1)th time step, respectively; 1 and 2 are integration parameters. To attain unconditional 
stability for linear elastic structures, the integration parameters in Eqs. (2.3a) and (2.3b) are defined as:  
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The CR algorithm can be observed to be explicit for both displacement and velocity, which makes the 
algorithm appealing for real-time testing. However, it can also be observed that accurate information 
of the structural properties (m, c, and k) is required for the parameters to achieve unconditional 
stability for linear elastic structures. This poses challenges for researchers when applying the CR 
algorithm for real-time testing since the stiffness may not be identified accurately for an experimental 
structure and this structural stiffness might also vary due to nonlinearity during a real-time test. This 
present study focuses on the effect of estimated stiffness on the stability and accuracy of the explicit 
CR algorithm using a discrete transfer function approach.  
 
For a linear elastic structure in Eq. (2.2), Chen and Ricles [2008a] showed that the CR algorithm can 
be represented by a discrete transfer function expressed in the following general form 
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where X(z) and F(z) are discrete z-transforms of the displacement xi and excitation force Fi, 
respectively; ni and di (i=0 to 2) are coefficients of the numerator and denominator, and are tabulated 
in Table 2.1. The solution for z in the complex z-domain that renders the denominator of  zG  in Eq. 
(2.5) to be zero is defined as a “pole” of the discrete transfer function [Ogata 1995]. The denominator 
of the discrete transfer function is also the characteristic equation of the integration algorithm. The 
stability of a discrete transfer function is determined by its poles. If the discrete function in Eq. (2.5) 
has all of its poles located inside, or on the unit circle in the complex z-domain the discrete system is 
stable. Otherwise it is unstable.  
 
 



3. STABILITY ANALYSIS OF CR INTEGRATION ALGORITHM UNDER ESTIMATED 
STIFFNESS 
 
When an estimated stiffness kes, instead of the actual stiffness k, is used for the explicit CR algorithm, 
the integration parameters in Eqs. (2.3a) and (2.3b) are modified as 
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The discrete transfer function for the CR algorithm with integration parameters in Eq. (3.1) can be 
derived and expressed in the general form of Eq. (2.5). The coefficients of the resulting discrete 
transfer function are tabulated in Tables 3.1, which can be demonstrated to be same as those in Tables 
2.1 when the estimated stiffness is equal to the actual stiffness. 
 

Table 3.1. Coefficients of G(z) for CR algorithm with estimated stiffness 
Numerator Denominator 

2n  0 2d 224 tktcm es 

1n  
24 t  1d 22 428 tktkm es 

0n  0 0d 224 tktcm es 

 
The characteristic equation of the CR algorithm with estimated stiffness can be derived as 
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For given invariant structural properties (m, c and k) and variable estimated stiffness kes, the critical 
value of estimated stiffness (kes) for stable poles of Eq. (3.2a) can be derived using the root locus 
approach from discrete control theory [Ogata 1995; Franklin et al. 2002], where Eq. (3.2a) can be 
rewritten as 

0
)24()48()24(

)12(
1

22

22





 esk

tcmztkmztcm

tzz
 (3.2b) 

 
For varying values of kes, the location for the solution of z in the discrete domain can be derived by 
plotting the root locus of the following discrete transfer function 
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      Figure 3.1. Typical root loci for Go(z) of CR algorithm   Figure 3.2. Stable regions of estimated stiffness  
                     with estimated stiffness    kes and ωnΔt for CR algorithm 



 
The discrete transfer function in Eq. (3.3) can be observed to have duplicate zeros of z=1, which are 
independent of structural properties, and two poles, which are dependent on the structural properties 
(m, c, k) and integration time step (Δt). The root loci of the discrete transfer function in Eq. (3.3) have 
two branches. As the value of the estimated stiffness kes in Eq. (3.2b) increases from zero to infinity, 
the root loci of Go(z) starts at the poles of the transfer function in Eq. (3.3) and terminates at its zeros. 
If the root locus falls on or within the unit circle, the characteristic equation in Eq. (3.2a) then has 
stable poles, implying that the CR algorithm will be stable for all possible positive values of estimated 
stiffness. Otherwise, unstable poles exist for the characteristic equation in Eq. (3.2a) and the algorithm 
is only stable for selected range of positive values of the estimated stiffness.  
 
Fig. 3.1 shows typical root loci of the open loop transfer function Go(z) in Eq. (3.3) with ζn=0.02, 
Δt=0.01 sec. and different natural frequencies of ωn=π/4 and ωn=13π/2 in Figs. 3.1(a) and 3.1(b), 
respectively. For a smaller value of ωn (i.e., ωn=π/4), both branches of the root loci in Fig. 3.1(a) are 
located in the unit circle of the discrete z-domain, which means that the characteristic equation in Eq. 
(3.2a) will always have stable poles for any non-negative value of the estimated stiffness. The stability 
of the CR algorithm in this case is therefore not affected by using the estimated stiffness for the 
integration parameters. For the larger value of ωn (i.e., ωn=13π/2), the transfer function in Eq. (3.3) has 
one pole located outside the unit circle. Based on the definition of root locus approach in control 
theory, part of the root loci outside the unit circle as shown in Fig. 3.1(b) will lead to unstable poles 
for the characteristic equation in Eq. (3.2a) and thus unstable CR algorithm. This indicates that the CR 
algorithm for a large value of ωn is stable for a selected range of estimated stiffness.  
 
It can also be observed from Fig. 3.1(b) that the critical value of kes, if instability exists, always occurs 
when the root locus crosses the point of z=-1 in the discrete z-domain. The critical value of kes 
therefore can be determined by substituting z=-1 into Eq. (3.2a), which leads to 
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Eq. (3.4) can be rewritten as 
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Eq. (3.5a) gives the critical value of estimated stiffness to achieve a stable CR algorithm when an 
estimated stiffness is used to determine the integration parameters. Combined with the observation 
from the root locus presented in Fig. 3.1, the stable region of kes can be determined as kes (kes)cr. Eq. 
(3.5a) also indicates that the critical value of (kes)cr for CR algorithm is independent of the inherent 
viscous damping of the structure. For small values of ωnΔt, Eq. (3.5a) gives a negative value of (kes)cr, 
which means that the CR algorithm will be always stable for any positive value of estimated stiffness 
kes, which is consistent with the observation from Fig. 3.1(a). When the value of ωnΔt becomes larger, 
Eq. (3.5a) gives a positive value of (kes)cr. In this case the CR algorithm would be stable only when the 
estimated stiffness kes is larger than (kes)cr (corresponding to Fig. 3.1(b)). The stable limit of kes/k for 
the CR algorithm is presented in Fig. 3.2 for different values of ωnΔt.  
 
Eq. (3.4) can also be written as following to give the critical value of (ωnΔt)cr for a selected value of 
kes, 
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For a ratio of kes/k smaller than 1.0 (i.e. an underestimation of the experiment structure stiffness), Eq. 
(3.5b) gives a positive real solution of ωnΔt. The CR algorithm is stable for any value of ωnΔt≤(ωnΔt)cr. 



When the value of kes/k is greater than or equal to 1.0, Eq. (3.5b) does not have a real solution. The CR 
algorithm is therefore stable for any value of ωnΔt. When the estimated stiffness is equal to zero, i.e., 
kes/k=0, Eq. (3.5b) gives the stability region of ωnΔt≤2.0, which is same as the stability limit for the 
Newmark Explicit Method [Newmark 1959]. 
 
 
4. ACCURACY ANALYSIS OF CR ALGORITHM UNDER ESTIMATED STIFFNESS 
 
The two poles of the discrete transfer function for the CR algorithm can be written as 
 

)]1(exp[ 2
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where σ and ε are the real and imaginary components; and i is the imaginary unit defined as 1i . 
The apparent frequency   and equivalent damping ratio ζeq are defined as 
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Two criteria are used in the present study to evaluate the effect of estimated structural stiffness on the 
explicit CR algorithm, i.e., period elongation and numerical damping, which are defined as 
 

nn TTTPE /)(   (4.3a) 
 

neqND    (4.3b) 

 
where T is the period from the calculated response defined as )//(2 tT   . The period elongation 
evaluate the period distortion due to the estimated structural stiffness, while the numerical damping 
assesses the damping introduced to the SDOF structure by the CR algorithm through the estimated 
structural stiffness. 

              
           Figure 4.1. Period elongation of CR algorithm                    Figure 4.2. Period elongation of CR algorithm                      
                   with different estimated stiffness                             with different estimated stiffness 
 
The period elongation of the explicit CR algorithm with estimated stiffness is presented in Fig. 4.1 for 
different values of kes/k with zero inherent viscous damping. Also presented in Fig. 4.1 is the period 
elongation of the Newmark explicit method and the Newmark method with constant average 
acceleration, which are designated as Newmark explicit and Newmark constant, respectively. With 
different values of kes/k equal to 0.0, 1.0 and 2.0, the CR algorithm shows different period distortion 
property. For the cases of kes/k equal to 1.0 and 2.0, the algorithm introduces period elongation (i.e., 
positive values of PE), while for the case kes/k equal to 1.0, the CR algorithm introduces the same 



period shortening as the Newmark explicit method. When the structural stiffness is underestimated, 
i.e., 0.0 ≤ kes/k ≤ 1.0, the period elongation of the CR algorithm falls between that of the Newmark 
explicit method and the Newmark method with constant average acceleration. When an overestimated 
structural stiffness is used, the CR algorithm will introduce larger period elongation than the Newmark 
method with constant average acceleration for the same value of Δt/Tn. 
 
Fig. 4.2 presents the variation of period elongation for the CR algorithm with respect to kes/k for 
different values of Δt/Tn=0.01, 0.1 and 0.3. It can be observed that the period elongation property of 
the CR algorithm increases almost linearly with respect to the ratio of kes/k for all different values 
Δt/Tn. For a small value of Δt/Tn (i.e., Δt/Tn=0.01), the CR algorithm has almost zero period distortion 
for kes/k between zero and 2.0. When the value of Δt/Tn increases to 0.1 and 0.3, the algorithm has 
period shortening for small values of kes/k and period elongation for large values of kes/k. It can also be 
observed that when the ratio between the integration time step and the natural period of the SDOF 
structure is smaller than or equal to 0.1, the period elongation is less than 0.1 for the range of kes/k 
between zero and 2.0. 
 

 
Figure 4.3. Numerical damping of CR algorithm with different estimated stiffness 

 
The numerical damping of the CR algorithm is presented in Fig. 4.3 for different values of kes/k with 
ζn=0. The numerical damping of Newmark explicit method and the Newmark method with constant 
average acceleration are also presented in Fig. 4.3 for the purpose of comparison. It can be observed 
that the CR algorithm starts to introduce negative numerical damping around Δt/Tn=0.318 (i.e., 
ωnΔt=2.0) for kes/k equal to zero, indicating that the algorithm becomes unstable. This is consistent 
with the stability analysis Eq. (3.5b). For the other cases in Fig. 4.3, i.e., kes/k=1.0 and 2.0, the explicit 
CR algorithm is shown to have zero numerical damping. 
 
 
5. NUMERICAL SIMULATION USING CR INTEGRATION ALGORITHM 
 
Numerical simulations of both linear and nonlinear SDOF structures are presented in this section to 
evaluate the effect of estimated stiffness on the explicit CR integration algorithm.  
 
5.1. Linear elastic SDOF structure 
 
The linear elastic SDOF structure for the numerical analysis is assumed to have a lumped mass of 
503.4 metric tons, a viscous damping ratio ζ of 0.02, and a natural frequency of 1.30 Hz. The N196E 
component of the 1994 Northridge earthquake recorded at Canoga Park is selected as the ground 
motion and is scaled to have a maximum ground acceleration of 0.838 m/s2. Figs. 5.1(a) and 5.2(a) 
present the comparison of the structural responses calculated using the explicit CR algorithm for the 
linear elastic SDOF structure subjected to the selected ground motion. Different structural stiffness 
estimates are used for the integration parameters, including kes/k=0, 1.0 and 2.0. Compared with the 
actual stiffness, the values of kes/k=0 and kes/k=2.0 represent 100% under- and over- estimation, 
respectively, which gives a reasonable range for the estimated stiffness of the experimental structure in 



the laboratory. The values of Δt=10/1024 sec. and Δt=20/1024 sec. are used for the integration time 
step for Figs. 5.1 and 5.2, respectively, leading to ωnΔt=0.08 and 0.16. Also presented in Figs. 5.1(a) 
and 5.2(a) is the structural response of the SDOF structure calculated Newmark method with constant 
acceleration, which will be referred to as exact solution. The linear elastic SDOF structure has a 
maximum displacement response of around 108.5 mm. Good agreement can be observed between the 
calculated structure responses from the CR algorithm and the exact solution for both cases, indicating 
that the explicit CR integration algorithm retains good accuracy under the selected estimates of the 
structural stiffness.  
 

        
   Figure 5.1. Comparison of time history analysis for linear          Figure 5.2. Comparison of time history analysis for linear 
           elastic SDOF structure using CR algorithm                          elastic SDOF structure using CR algorithm 
             with estimated stiffness (Δt=10/1024 sec.)             with estimated stiffness (Δt=20/1024 sec.) 
 
The differences between the calculated structural responses and the exact solution are presented in 
Figs. 5.1(b) and 5.2(b). A maximum error of to 1.8 mm, 1.2 mm and 0.7 mm occurs in Fig. 5.1(b) for 
the cases of kes/k=0, kes/k=2.0 and kes/k=1.0, respectively, which correspond to 1.7%, 1.1% and 0.6% of 
the maximum displacement response of the SDOF structure. When a larger time step is used, i.e., 
Δt=20/1024 sec., the maximum error for the calculated structural response in Fig. 5.2(b) is equal to 5.0 
mm, 3.0 mm and 1.0 mm, for the cases of kes/k=0, kes/k=2.0 and kes/k=1.0, respectively, and 
corresponds to 4.6%, 2.8% and 0.9% of the maximum displacement response of the SDOF structure. 
This again demonstrates that the explicit CR integration algorithm has good accuracy for the linear 
elastic SDOF structure for a range of ratio kes/k between 0.0 and 2.0.  
 
5.2. Nonlinear SDOF Structure 
 
The nonlinear SDOF structure is assumed to have the same properties of mass, inherent viscous 
damping and linear elastic stiffness as the linear elastic SDOF structure discussed above. The Bouc-
Wen model [Wen 1980] is used to model the nonlinear structural behavior of the SDOF structure, of 
which the restoring force is defined as 
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where yx  is the yield displacement of the SDOF structure; k is the linear elastic stiffness;  is the ratio 

of the post- to pre-yield stiffness; and z(t) is the evolutionary parameter of the Bouc-Wen model 
governed by the following differential equation: 
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The dimensionless parameters ,  and q in Eq. (5.2b) control the shape of the hysteretic loop of the 
nonlinear SDOF structure [Wen 1980]. The values of the parameters of the Bouc-Wen model used in 
this paper are given in Table 3. 

 

 
              Figure 5.3. Comparison of time history analysis                  Figure 5.4. Comparison of time history analysis 
             for nonlinear SDOF structure using CR algorithm                for nonlinear SDOF structure using CR algorithm 
                   with estimated stiffness (Δt=10/1024 sec.)                              with estimated stiffness (Δt=20/1024 sec.) 
 

Table 5.1 Parameters of the Bouc-Wen Model for the Analytical Substructure 
 

 
Figs. 5.3(a) and 5.4(a) present the comparison of the calculated structural responses of the nonlinear 
SDOF structure using the explicit CR algorithm with the converged solution from the Newmark 
method with constant average acceleration, which is referred to as exact solution. Different estimates 
of the stiffness are used to determine the integration parameters for the CR algorithm, including 
kes/k=0, 1.0 and 2.0. Two different values, 10/1024 sec. and 20/1024 sec. are used for time step. Good 
agreement can again be observed between the calculated responses and the exact solution in Figs. 
5.3(a) and 5.4(a). The nonlinear SDOF structure has a maximum displacement response of around 85 
mm. The differences between the calculated responses and the exact solution are presented in Figs. 
5.3(b) and 5.4(b). A smaller difference can be observed when compared with that in Figs. 5.3(b) and 
5.4(b). The maximum error for all three cases is shown to be less than 1 mm, which is about 1.2 % of 
the maximum structure response. The better accuracy of the CR algorithm for the nonlinear SDOF 
structure with same estimated structural stiffness can be attributed to the small value of ωtΔt when the 
structure develops nonlinear behaviour, where ωt is the circular frequency corresponding the tangent 
stiffness. Figs. 5.3 and 5.4 indicate that the explicit CR algorithm again retains good accuracy for the 
selected nonlinear SDOF structure. 
 
 
6. SUMMARY AND CONCLUSION 
 
The effect of estimated structural stiffness on the stability and accuracy of unconditionally stable 
explicit CR algorithm is investigated in this paper. A root locus approach from discrete control theory 
is used in the stability analysis.  The estimated structural stiffness is shown to affect the unconditional 
stability of the algorithm. For a linear elastic structure, an under-estimated stiffness (i.e., kes<k) will 
decrease the stability limit, while the integration algorithms with an over-estimated stiffness (i.e., 
kes>k) will help the algorithm maintain the unconditional stability. When a positive estimated stiffness 
is used, the CR algorithm is demonstrated to always have larger stability limit than the commonly used 
Newmark explicit method. The accuracy of the explicit CR algorithm under estimated structural 
stiffness is investigated through the poles of the discrete transfer function for linear elastic structures. 

Parameter ka (KN/mm)  a
yx (mm)   q 

Value 11.76  0.01 10  0.55 0.45 2 



The algorithm is shown to have same period elongation as the Newmark explicit method when a zero 
value of the estimated stiffness is used. A period elongation is introduced for an over-estimated 
stiffness. When an under-estimated stiffness is used, the algorithm introduces period shortening for 
small values of ωnΔt and period elongation for large values of ωnΔt. For both cases, zero numerical 
damping is introduced for the CR algorithm. Numerical simulations of both linear elastic and 
nonlinear SDOF structures are presented to evaluate the performance of the explicit CR algorithm with 
estimated values of structural stiffness. The CR algorithm was shown to have good accuracy when the 
estimated stiffness is between 0 and two times of the exact value of the linear elastic stiffness for 
linear structures. For nonlinear structures, a better accuracy is observed for the CR algorithm when 
estimated stiffness is used for the experimental specimen. The CR algorithm therefore provides a 
viable choice for real-time testing in earthquake engineering research 
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