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SUMMARY:
Easily deformable tall structures exposed to a strong vertical component of an earthquake excitation are endangered
by auto-parametric resonance effect. This non-linear dynamic process in a post-critical regime caused heavy
damages or collapses of many towers, bridges and other structures in the epicenter area. Vertical and horizontal
response components are independent on the linear level. However their interaction takes place due to non-linear
terms in post-critical regime. Two different types of the post-critical regimes are presented: (i) post-critical state
with possible recovery; (ii) exponentially rising horizontal response leading to a collapse, when the irreversibility
limit is overstepped. A special attention is paid to system parameters sensitivity to reaching the semi-trivial solution
stability as well as the limit of the irreversibility. Solution method combining analytical and numerical approaches
is developed and used. Its applicability and shortcomings are commented. A few hints for engineering applications
are given. Some open problems are indicated.
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1 INTRODUCTION

Papers devoted to dynamics of slender structures (towers, masts, chimneys, bridges, etc.) under earth-
quake attack are dealing mostly with effects of horizontal excitation component. However a strong
vertical component in epicenter area represents very often the most dangerous condition leading to struc-
ture collapse due to auto-parametric resonance. This highly non-linear dynamic process caused in the
past heavy damages or collapses of towers, bridges and other structures. In sub-critical linear regime
vertical and horizontal response components are independent. So if no horizontal excitation is taken into
account, no horizontal response component is observed. The semi-trivial solution gives a full image of
the structure behavior. If the frequency of a vertical excitation in a structure foundation finds in a certain
interval and its amplitude exceeds a certain limit, the vertical response component looses dynamic stabil-
ity and dominant horizontal response component is generated. This post-critical regime (auto-parametric
resonance) follows from a strong non-linear interaction of vertical and horizontal response components
which can lead to a failure of the structure. Consequently, very widely used linear approach, usually
doesn’t provide any interesting knowledge in such a case.

Auto-parametric systems have been intensively studied for the last four decades. These investigations
are motivated by various technical branches and by basic theoretical research in rational mechanics. A
theoretical outline dealing with these systems has been presented probably for the first by Haxton and
Barr (1974). During this time many papers contributing to analytical, numerical as well as experimental
aspects of auto-parametric systems have been published mostly by Tondl, Nabergoj and co-authors, e.g.
Nabergoj and Tondl (1994); Tondl and Nabergoj (1994); Tondl (1997); Tondl at al. (2000), etc. Many
other references can be found. Several monographs, e.g. Guckenheimer and Holmes (1983) or Hatwal
at al. (1983), presenting a comprehensive overview of partial results and methods have appeared. A
couple of papers dealing with auto-parametric systems under deterministic and random excitation has
been recently published by authors of this study, e.g. Náprstek and C.Fischer (2009).



Similar auto-parametric systems have been studied during recent years, see e.g. Náprstek and C.Fischer
(2008), and others. The mathematical models used in these studies idealized the vertical structure as
one concentrated mass related with the basement by a massless spring. However a following-up research
revealed that such approach is not satisfactory in many particular cases. In principle easily deformable tall
structures are the most sensitive regarding effects of auto-parametric resonance. Therefore the structure
itself should be modeled as a console with continuously distributed stiffness and mass in order to respect
the whole eigen-value spectrum. Concerning subsoil conventional model including internal viscosity can
be retained.

2 MATHEMATICAL MODEL

Let us consider the theoretical model in a vertical plane outlined in the Fig. 2.1. The system is Hamil-
tonian, see for instance Arnold (1978). To deduce the governing differential system in the form of
Lagrange equations the kinetic and potential energies of the moving system are formulated as follows:

T (t) = 1
2M(ẏ2(t) + r2ϕ̇2(t)) (a)

+1
2µ

l∫
0

[(ϕ̇(t)x+ u̇(x, t))2 + ẏ2(t)− 2ẏ(t)(ϕ̇(t)x+ u̇(x, t)) sinϕ(t)]dx,

U(t) = Mg · y(t) + 1
2C((y(t)− y0(t))2 + r2ϕ2(t)) (b)

+µg
l∫
0

[y(t)− x(1− cosϕ(t))− u(x, t) sinϕ(t)]dx+ 1
2EJ

l∫
0

u
′′2(x, t)dx.

(2.1)

In Eqs (2.1) following notification has been introduced:

y = y(t) - vertical displacement of the B point;
y0 = y0(t) - kinematic excitation (seismic random

process);
ϕ = ϕ(t) - angular rotation of the system in the B

point;
u = u(x, t) - bending deformation of the vertical

console;
M - foundation effective mass;
C - subsoil effective stiffness;
µ - console uniformly distributed mass;
EJ - console bending stiffness (constant);
ηc, ηe - viscous damping parameters of the C

and EJ stiffness following Kelvin def-
inition;

r, l - geometric parameters;
x - length coordinate along the console.

Non-dimensional response and excitation compo-
nents are useful to be introduced:

Figure 2.1. Outline of an auto-parametric
model with a continuous vertical console

ζ0(t) = y0(t)/l, ζ(t) = y(t)/l, ϕ(t), u(x, t)/l = ψ(ξ, t), ξ = x/l, % = r/l, m = µl (2.2)

The material damping of the console is proportional. Therefore the deformation of that can be expressed
in a form of a convergent series:

u(x, t) =

n∑
i=1

αi(t)·ψi(x) or dimensionless: ψ(ξ, t) =

n∑
i=1

αi(t)·χi(ξ); ψi(x) = l ·χi(ξ)

(2.3)



where basis functions χi(ξ) are eigen functions (eigen forms) of the differential equation:

χ
′′′′
i (ξ) + λiχi(ξ) = 0, (λi/l)

4 = µω2
i /EJ (2.4)

with boundary conditions valid for a console beam: χi(0) = 0, χ
′
i(0) = 0, χ

′′
i (1) = 0, χ

′′′
i (1) = 0.

This approach is useful due to proportional damping which makes time coordinates αi(t) independent
and so the phase shift of each eigen form is constant over the whole definition interval if the damping is
sub-critical.

Let us deduce Lagrangian equations for components ζ(t), ϕ(t) and components αi(t) arithmetizing co-
ordinates χi(ξ). Let us adopt approximately (1 − cosϕ ≈ 0) and (sinϕ ≈ ϕ). Hence the system of
Lagrangian equations reads:

ζ̈(t)− 1

4
κ0(ϕ

2(t))
q q

+ ω2
0[ζ(t)− ζ0(t) + ηc(ζ̇(t)− ζ̇0(t))] (a)

−κ0
n∑

i=1

[(ϕ(t)α̇i(t))
q
Θ0,i] = 0,

ϕ̈(t)− 1

2
κ1ζ̈(t)ϕ(t) + ω2

1[ϕ(t) + ηcϕ̇(t)] (b)

+κ1

n∑
i=1

[α̈i(t)Θ1,i + (ζ̇(t)α̇i(t)− ω2
2αi(t))Θ0,i] = 0,

α̈i(t) ·Θ2,i + ϕ̈(t) ·Θ1,0 − [(ζ̇(t)ϕ(t))
q

+ ω2
2ϕ(t)] ·Θ0,i (c)

+ω2
3[αi(t) + ηeα̇(t)]Θ3,i = 0,

(2.5)

κ0 =
m

M +m
, κ1 =

m

M%2 +m/3
,

ω2
0 =

C

M +m
, ω2

1 =
C%2

M%2 +m/3
, ω2

2 =
g

l
, ω2

3 =
EJ

ml3

Θ0,i =
1∫
0

χi(ξ)dξ, Θ1,i =
1∫
0

ξχi(ξ)dξ, Θ2,i =
1∫
0

χ2
i (ξ)dξ, Θ3,i =

1∫
0

(χ
′′
i (ξ))2dξ.

(2.6)

Regarding parameters Θj,i, eigen functions of Eq. (2.4) with respective boundary conditions have a
detailed form as follows:

(χi(ξ) = C1 · cosλiξ + C2 · sinλiξ + C3 · chλiξ + C4 · shλiξ, )

C1 = sinλishλi, C2 = − sinλichλi − cosλishλi,
C3 = − sinλishλi, C4 = sinλichλi + cosλishλi, chλi · cosλi + 1 = 0.

(2.7)

where λi = 1.8751, 4.6941, 7.8548, 10.9955, ......, etc. is a chain of real solutions of a transcendent
equation: chλi · cosλi + 1 = 0. In principal analytical form of parameters Θj,i can be carried out.
However, the results are very complicated and don’t provide any information important from physical
point of view. Therefore they will be replaced by numerical integration results in particular cases.

The system (2.5) represents a simultaneous differential system for ζ(t), ϕ(t) and αi(t) having a size
related with a number of eigen-forms (2.4) taken into account. Although the console bending is con-
sidered linear, components αi(t) are non-linearly related with ζ(t), ϕ(t). Nevertheless a mutual link of
αi(t) components is not complicated. This fact follows from the linearity of the bending component,
proportionality of its damping and so the orthogonality of relevant eigen forms χi as well as their second
derivatives χ

′′
i in the meaning of Eq. (2.4) and respective boundary conditions. Concerning the exci-

tation process ζ0(t), it will be considered as harmonic in the first step in order to investigate limits of
stable semi-trivial and post-critical regimes. Later the random non-stationary character of ζ0(t) will be
respected.



3 SEMI-TRIVIAL SOLUTION AND ITS STABILITY

Let us consider the harmonic excitation transformed into the dimensionless form:

y0 = A0 sinωt ⇒ ζ0 = a0 · sinωt , A0 = a0 · l (3.1)

and assume that the stationary semi-trivial solution exists. Its general form can be written as follows:

ζs = ac · cosωt+ as · sinωt , ϕ = 0 , αi = 0 (3.2)

Substituting Eqs (3.2) into the system (2.5), Eqs (2.5b) and (2.5c) are satisfied identically, while Eqn
(2.5a) doing obvious modifications provides the coefficients ac, as:

ac = −a0ω
2
0

δ
ω3ηc , as =

a0ω
2
0

δ
(ω2

0 − ω2 + ω2
0ω

2η2c ) , δ = (ω2 − ω2
0)2 + ω4

0ω
2η2c (3.3)

Expression (3.2) together with coefficients (3.3) represents an approximate simple linear stationary solu-
tion of the single degree of freedom (SDOF) system moving in vertical direction being excited kinemat-
ically in the point B. The resonance curve of the response amplitude has the form:

R2
0 = a2c + a2s =

a20ω
4
0

δ
(1 + ω2η2c ) . (3.4)

It represents a set of well known resonance curves of a linear SDOF system for a couple of excitation
amplitudes a0 with noticeable dependence on viscous damping ηc. However the solution being char-
acterized by this curve can be unstable beyond a certain value of the excitation amplitude a0 in some
intervals of the excitation frequency ω. For this reason the stability analysis must be carried out. Very
well known general monographs dealing with this topic appeared together with their re-editions, i.e.
Chetayev (1962). Nevertheless, dynamic stability of non-linear systems with one or a couple of degrees
of freedom has been discussed using various methods by many authors in problem oriented papers, e.g.
Bajaj at al. (1994), Benettin at al. (1980), or in auto-parametric system focused monographs, e.g. Tondl
(1991).

Let us adopt the linear perturbation approach in order to assess the stability limits of the semi-trivial
solution (3.2). Indeed, it can be written approximately in the arbitrarily small neighborhood of the semi-
trivial solution:

ζ(t) = ζs(t) + q(t) = ζs(t) + qc(t) cosωt +qs(t) sinωt , (a)
ϕ(t) = 0 + p(t) = pc(t) cos 1

2ωt +ps(t) sin 1
2ωt , (b)

αi(t) = 0 + si(t) = sc,i(t) cos 1
2ωt +ss,i(t) sin 1

2ωt . (c)
(3.5)

where absolute value of the perturbation amplitudes qc(t), qs(t), ... are small. The argument (t) will be
omitted in further text whenever possible (ζ, ϕ, αi, q, qc, qs, ...) etc. Introducing expression (3.5a) into
Eqn (2.5a) and taking into account that ζs represents its semi-trivial solution, following equation for
perturbation q can be extracted:

q̈ + ω2
0(q + ηcq̇) = 0 (3.6)

Eqn (3.6) is linear and homogeneous. It is obvious that lim
t→∞

qc, qs = 0 if ηc > 0 and so stationary
solution vanishes. For this reason the vertical response component ζ remains independent and stable in
the neighborhood of the semi-trivial solution ζs (on the level of the linear perturbation approach).

Let us put now the second column of the expressions (3.5a-c) into Eqs (2.5b,c). Keeping only the linear
terms of perturbations p, s and respecting that q ≡ 0, one obtains the following differential system:

p̈(t)− 1
2κ1ζ̈s(t)p(t)

+κ1
n∑

i=1
[s̈i(t)θ1,i + ζ̇s(t)ṡi(t)θ0,i − ω2

2si(t)θ0,i] + ω2
1(p(t) + ηcṗ(t)) = 0,

s̈i(t)θ2,i + p̈(t)θ1,i

−(ζ̈s(t)p(t) + ζ̇s(t)ṗ(t))θ0,i − ω2
2p(t)θ0,i + ω2

3(si(t) + ηeṡi(t))θ3,i = 0.

(3.7)



The system (3.7) as expected is linear similarly like Eq. (3.6). However three coefficients include
harmonic components due to ζ̈s, ζ̇s terms being given by Eqn (3.2). Hence the system (3.7) is of the
Mathieu type (with parametric excitation) and its solution stability should be verified, cf. for instance
Abarbanel at al. (1990) or Xu and Cheung (1994).

As the next step functions p, s in Eqs (3.7) should be replaced by means of their first harmonics rep-
resented by the third column in Eqs (3.5a-c). The method of harmonic balance enables to obtain the
following homogeneous algebraic system for pc, ps, sc,i, ss,i parameters:

P · p + S1 · s1 + S2 · s2 + . . . + Sn · sn = 0

S1 · p + D1 · s1 + 0 + . . . + 0 = 0

S2 · p + 0 + D2 · s2 + . . . + 0 = 0
...

...
...

. . .
...

Sn · p + 0 + 0 + . . . + Dn · sn = 0

=⇒(P−
n∑

i=1

Si ·D−1i · Si) · p = 0,

(3.8)

where sub-matrices P,Si,Di ∈ R2×2 and vectors p, si ∈ R2 have a form as follows:

P =

[
1
4ω

2 · ac + (ω2
1 − 1

4ω
2)κ−11 , 1

4ω
2 · as + 1

2ω
2
1ωηcκ

−1
1

1
4ω

2 · as − 1
2ω

2
1ωηcκ

−1
1 , −1

4ω
2 · ac + (ω2

1 − 1
4ω

2)κ−11

]
, pT = [pc, ps],

Si =

[
+1

4θ0,iω
2 · ac − 1

4θ1,iω
2 − θ0,iω2

2,
1
4θ0,iω

2 · as
1
4θ0,iω

2 · as, −1
4θ0,iω

2 · ac − 1
4θ1,iω

2 − θ0,iω2
2

]
, sTi = [sc,i, ss,i],

Di=

[
−1

4ω
2θ2,i + ω2

3θ3,i,
1
2ωω

2
3ηeθ3,i

−1
2ωω

2
3ηeθ3,i, −1

4ω
2θ2,i + ω2

3θ3,i

]
.

(3.9)

The system (3.8) is presented in two versions: (2n + 2) × (2n + 2) (large) and 2 × 2 (compact). The
latter one is enabled due to special form of the large version. In such a case sub-vectors si can be easily
eliminated and the system in the compact version can be obtained. However matrix elements of the
compact version are very complicated indead and so applicability can be a bit problematic. Anyway
each form is suitable for a particular purposes of analytical or numerical treatment. For instance the
basic analysis of stability can be done using the compact version of the system (3.8). Obtaining eigen-
vectors p(j) sub-vectors si(j) can be subsequently easily derived by back substitution into large version
of the system (3.8). The only sensitive step can be find inversion of matrices Di. Inspection of Eqs (3.9)
provides that the determinant of Di is always positive whenever the damping ηe (console) is positive
and matrices Di are all regular. If there is ηe = 0, one of the determinants det(Di) can vanish for
ω coinciding with the eigen-frequency of the console as it corresponds with particular λi. This case
however is very seldom and should be treated by a special way. It manifests as a turning point on a
stability limit.

Let us be aware that the algebraic system Eqs (3.8) is meaningful only under certain conditions. The
system response should be fully or at least nearly stationary in order to be entitled to apply the harmonic
balance method. In other words functions pc, ps, sc,i, ss,i, although being dependent on time, should
enable to be approximated by constants within the interval of one period or at least to be considered
as functions of the ”slow time”. Under circumstances of a chaotic or quasi-periodic response with no-
ticeable energy transfer between ζ and ϕ, αi components, the harmonic balance method is inapplicable
and the system (3.8) would become meaningless as long as any stability limit is reached. Nevertheless
as a tool for the stability limit shape investigation this method can be widely used especially when the
semi-trivial system is linear.

Rich references can be addressed to get experiences with early stage of the post-critical processes with
dominating chaotic component, see e.g. papers Abarbanel at al. (1990), Baker (1995), Hatwal at al.



(1983), or monographs Lichtenberg and Lieberman (1983), Ott (2002), Schuster (2005) or even with
random character, e.g. Moser (1973). For special considerations regarding non-linear dynamic systems,
see Thompson and Stewart (2002).

If the above general condition is complied with, pc, ps, sc,i, ss,i can be taken as parameters. The sys-
tem (3.8) being homogeneous cannot provide non-trivial solution unless the determinant of its matrix
vanishes. So that the zero determinant of the system matrix will lay out the shape of the stability limit.

4 NUMERICAL EXPERIMENTS - DOMAIN WITH POSSIBLE SYSTEM RECOVERY

Let us recall the system in the Fig. 2.1 and verify its properties regarding the dynamic stability. Zero
determinant of the system (3.8) will be repeatedly evaluated in a certain interval of frequency ω for
various combinations of parameter values presented in the table below. Various combinations of values
presented throughout the table have been applied in order to obtain typical results concerning the semi-
trivial solution stability. The standard code and programming of Wolfram Mathematica package and
some in house developed blocks have been used.

Table 4.1. Parameters of the system analyzed

M C µ EJ ηc ηe l % = r/l

10,0 11,0 0,125 100 0,05 0,05 8,0 0,05
250 0,10 0,10 0,10
500 0,15 0,15 0,15

1000 0,20 0,20 0,25
2500 0,25 0,25 0,35
5000 0,30 0,30 0,45

To get an overview about influence of system parameters onto the semi-trivial solution stability let us
investigate at first Fig. 4.1. The black graphs represent resonance curves following Eq. (3.4) for various
excitation amplitudes a0. The red curves stand in stability limits under circumstances that the console
bending stiffness is employed by one, two or three eigen-forms. Respective pictures (a)-(f) are evaluated
for six bending stiffness levels of the console. In principle it is obvious that increasing number of eigen-
forms taken into consideration leads always to drop of the stability limit as the system is getting to be
weaker. A certain exception represent narrow areas around eigen-frequencies of the system, whatever
type they are.

Picture (a) demonstrates that low bending stiffness leads to the stability loss being concentrated in the
area around the 1st eigen-frequency of the console. In this frequency domain the number of eigen-forms
taken into account is very weak and stability is lost even for small excitation amplitudes a0. We can see
a local maximum in the neighborhood of ω = 1, 0 (eigen-frequency of the semi-trivial solution) at the
same picture, when two or more eigen-forms (n = 2 or more) are taken into account. This interval is
however very short and respective positive influence should be neglected. Finally it can be stated that
one or two instability intervals have been ascertained ω ∈ (s1 − s2) and ω ∈ (s3 − s4) or ω ∈ (s1 − s4)
depending on the excitation amplitude a0 and the number n of eigen-forms respected.

Instability intervals are concentrating mostly in proximity of frequencies ω0, ω1, ω3 (sub-soil and system
basic properties) and ω4,5,6,.. = ω3 · λ1,2,3,.. (console flexibility). Therefore it is obvious that minimum
of stability limits is moving to higher frequencies with increasing bending stiffness of the console. As a
special case can be considered picture (b) where nearly ω0 and ω5 coincide and twofold eigen-frequency
occurs. Thereafter for higher EJ the stability minimum exceeds ω = 1, see pictures (c)-(f). This
knowledge can serve as an instruction for engineering practice.



Figure 4.1. Stability limits of the semi-trivial solution including one, two or three console eigen-forms (n = 1, 2, 3)
for various bending stiffness of the console; dampings ηc = 0, 05, ηe = 0, 05, ratio % = 0, 2.

Let us have a look at the Fig. 4.2 demonstrating an evolution of the stability limits when the ratio
% = r/l, i.e. ground width/console height is changing. We start with the picture (b). It represents an
approximate boundary (exact value is %c = 0, 086 keeping other parameters) below which the static
stability is violated. In other words for % < %c the system is instable even in a static state leading to final
collapse. Therefore the dynamic problem is worthy to be investigated for % > %c. Of course a position
of the static stability boundary in general is a function of all system parameters. The above value %c
corresponds to parameters in use.

Position of dynamic stability limits minimum is well expressed for each ratio %. The position as well
as the value of the minimum are nearly independent from number of eigen-forms n being taken into
consideration. The position on the frequency axis is visibly rising with increasing ratio % abandoning
resonance area of semi-trivial solution. As it follows from pictures (d)-(f), the stability loss is less and
less probable even for higher amplitudes of excitation. Therefore the broad band excitation is also less
and less dangerous. This attribute should be taken into account in a practical engineering, despite its
technical application is much more complex as adjusting of the console stiffness.

The third parameter significantly influencing the semi-trivial solution (or the system) stability is the sub-
soil viscous damping. Although a lot different models of the damping can be discussed, Voigt model is
probably able to describe the principle properties of the system response respecting the damping. It fol-
lows from Fig. 4.3, that resonance curves of the semi-trivial system are rapidly dropping with increasing
ηc parameter while the shape of stability limits doesn’t change considerably. Instability area concen-
trates around frequency ω0 and more or less keeps its position and extent. Therefore for design practice
it is recommended to try as much increase the sub-soil viscosity as possible using some special stuffs
for material treating. Internal damping of the console ηe influences the stability limits as well. How-
ever variation of this parameter didn’t lead to considerable changes in shape and character of respective
stability limits provided that other system parameters are kept.



Figure 4.2. Stability limits of the semi-trivial solution (n = 1, 2, 3) for various ratio % = r/l (ground width/height);
dampings ηc = 0, 05, ηe = 0, 05, EJ = 500.

5 NUMERICAL EXPERIMENTS - THE LIMIT OF IRREVERSIBILITY

As it has been mentioned above, the post-critical regime can be of two types. Both of them are governed
by the full differential system (2.5). The first type means a response process running within a certain
limits around the semi-trivial solution. When the excitation is stopped, the system is able to recover and
to return to a standstill. Overstepping the limit of irreversibility (or the outer stability limit) the second
regime emerges leading to inevitable collapse of the system. The response becomes non-periodic rising
exponentially beyond all limits. The mathematical model (2.5) is not able any more to give a true picture
of such terminal states. Its applicability finishes shortly after the limit of the irreversibility is surpassed.

To trace this limit the analytical investigation of the system (2.5) doesn’t probably provide any under-
standable results. Therefore simulation processes should be undertaken in order to outline this limit.
Numerical solution of the system (2.5) in full version has been multiply performed as long as the nu-
merical process fails due to numerical stability loss. This collapse occurs in a certain time from the
beginning of the integration, because the cumulative errors lose an ability to eliminate themselves. So
that the moment when this state occurs indicate that the limit of irreversibility has been reached.

Some result have been plotted in Fig. 4.4 for three console bending stiffness. The stability limit of the
semi-trivial solution has been plotted only for n = 3 (three eigen-forms considered). Green curves repre-
sent limits of irreversibility. There are plotted three limits in every picture (a)-(c). Each one demonstrates
interconnection of points when numerical process collapsed after a certain time τc. Three levels of τc
have been investigated. It is obvious, that increasing τc, the result converges to a fixed curve making
a lower envelope of all partial results. Therefore there exists a limit curve characterizing the limit of
irreversibility independent from τc and the solution process itself.

Results demonstrate that the blue curves are approaching stability limits of the semi-trivial solution
especially for higher values of the bending stiffness of the console. Special problems emerged for low
bending stiffness when the eigen-frequency ω0 oversteps the first bending eigen-frequency of the console.



Figure 4.3. Stability limits of the semi-trivial solution (n = 1, 2, 3) for various values of the sub-soil viscous
damping; other parameters ηe = 0, 05, EJ = 500, % = 0, 2.

6 CONCLUSION

Authors deal with easily deformable tall structures are very sensitive to effects of auto-parametric reso-
nance (chimneys, towers, etc.). If the amplitude of a vertical excitation in a structure foundation exceeds
a certain limit, a vertical response component looses stability and dominant horizontal response compo-
nent arises. This post-critical regime (auto-parametric resonance) follows from the non-linear interaction
of vertical and horizontal response components and can lead to a failure of the structure.

Hamiltonian functional is formulated and subsequently respective Lagrangian governing system is car-
ried out. Differential system shows that horizontal and vertical response components are independent
on the linear level. Their interaction takes place due to non-linear terms in post-critical regime only.
Two generally different types of the post-critical regimes are presented in the paper: (i) Although in the
post-critical state, a certain area in the neighborhood of the stable state exists wherefrom the structure
response can return back to the stable state, when the stability conditions are regained; sensitivity of the
system parameters concerning auto-parametric stability loss is carefully analysed; (ii) Beyond the pri-

Figure 4.4. Outer stability limit (limit of irreversibility) of the system - blue curves for the increasing console
bending stiffness; other parameters ηe = 0, 05, % = 0, 2.



mary area of the instability the rocking response component rises rather exponentially leading inevitably
to a failure of the structure. Consequently, presence of the horizontal component in the system response
does not automatically mean inevitable collapse of the structure. Such a response can keep stationary
character and can disappear, if the excitation is removed. However, if the limit of the irreversibility is
overstepped, horizontal response components rise beyond any limits and the structure collapses.

In principle solution methods combining analytical and numerical approaches have been developed and
used. Their applicability and shortcomings are commented. A few hints for engineering applications in
a design practice are given. Some open problems are indicated.
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