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SUMMARY:  

A control algorithm suitable for irregular structures subjected to earthquake actions is investigated. The general 

control strategy consists of monitoring the incoming signal, analyzing it and recognizing its dynamic 

characteristics, applying the control algorithm in order to calculate the required action, and, finally, applying this 

action to the structure by means of control devices. The controlled algorithm that is used is a pole placement 

algorithm. Selection of poles of the controlled structure, which is critical issue for the success of the algorithm, is 

proposed in this paper by the following procedure: A fictitious symmetric structure is obtained from the irregular 

structure adding vertical elements, columns, shear walls or braces, at any location is necessary. The poles of 

symmetric structure are calculated. These poles are forced to be the poles of the irregular controlled structure. 

Based on locations of these poles, and using the pole placement algorithm, the feedback matrix is obtained. 

Using this feedback matrix, control forces are calculated at any time instant during the earthquake and are 

applied to the irregular structure by the control devices, which are installed at specific locations. The proposed 

control procedure makes the irregular structure to behave like a regular one. From the numerical results it is 

shown that the above control procedure is efficient in reducing the response of irregular building structures, with 

small amount of required control action. 
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1. INTRODUCTION 

The last thirty years remarkable progress has been made in the field of control of civil engineering 

structures subjected to environmental loadings such as winds and earthquakes. Research and 

implementation in practice have shown that seismic control of structures has a lot of potential but also 

many limitations, Soong (1990), Housner et al. (1997). Most of studies assumed that the controlled 

structure is a planar structure. However, it is generally recognized that a real building is actually 

asymmetric in plan. Because of this asymmetry, it will undergo lateral as well as torsion vibrations 

simultaneously.  

To compensate the tortional effect one approach is to retrofit and strengthen the building creating a 

new vertical structural elements shear walls in a suitable position in order to cancel the irregularities 

that exists. This is a traditional approach and is followed when no architectural or functional 

limitations are exists on the building. A second approach to faced irregularities is to use passive 

control devices as base isolators as it is shown in the work of Colunga and Soberon (2002 and 2007) 

and Gavin and Alhan (2002). Other passive control devices as dampers can also be used in suitable 

locations on the building in order to cancel again the irregularities Lavan and Levy (2006), Goel 

(2000), Lin and Chopra (2001).  

A multiple tuned mass dampers (MTMD) can also be applied on the vibration control of irregular 

buildings considering soil structure interaction Lin and Wang. (2001). A semi active control system, 

using MR Dampers, can also be applied in order to reduce the coupled lateral and torsional motions in 

asymmetric buildings subjected to horizontal seismic excitations Yoshida et al. (2003). Hybrid control

system consisting of a passive supplementary damping system and a semi-active tuned liquid column 



damper (TLCD) system used to control irregular building under various seismic excitations, Kim and 

Adeli (2005). When a semi active or hybrid control system is applied to a structure then a control 

algorithm that used to direct the semi active devices is needed. In research studies and practical 

applications, various control algorithms have been investigated in designing controllers, such as pole

placement control, linear quadratic or Gausian regulator LQR, LQG, H� or H2 control, sliding mode 

control, control strategies based on fuzzy logic or neural network are employed for the nominal 

controller design. The most suitable algorithms for structural application and the practical 

considerations that should be taken into account are described by Soong (1990). 

One of the most suitable algorithms for controlling the structure is the pole placement algorithm. Pole 

placement algorithms have been studied extensively in the general control literature Sage and White 

(1977), Kwakernaak and Sivan (1972), Brogan (1974), Ogata (1997), Kautsky and Nichols (1985). 

The application of the algorithm in structural control can be found in the work of Martin and Soong 

(1976), Wang et al. (1983), Meirovotch (1990), Soong (1990), Utku (1990), and Preumont (2002), In 

Pnevmatikos and Gantes (2010) pole placement algorithm where used as control algorithm for 

mitigating the response of structures subjected to earthquake actions. In this work the poles of 

controlled structure are calculated on-line based on the important frequencies of seismic loading. 

In this study the pole placement control algorithm is used in order to control irregular buildings. 

Firstly, a fictitious symmetrical building is created from the irregular building cancelling all 

irregularities. The poles of this fictitious symmetrical building are calculated. The poles of the 

controlled irregular building are forced to be equal with the poles of the symmetrical building. Then,

the feedback matrix and the equivalent control force of the semi active devices applied to irregular 

building during the excitation are estimated. The result of this procedure is that the total controlled 

structure (irregular building with the devices) behaves like the fictitious symmetrical building.  

2. THEORETICAL BACKGROUND 

The equation of motion of one story, irregular, controlled structure based on orthogonal system with 

center of axis located at the center of mass of diaphragm is: 
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where where M, C, K denote the mass, damping and stiffness matrices of the structure, 

respectively. In irregular structure the mass and stiffness matrix is given below: 
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where m is the diaphragm mass and ICM is the moment of inertia around the vertical axis that pass from 

center of mass, CM, Lx , Ly are the dimensions of the plate, Ki is the stiffness matrix of the vertical 

element (column or shear wall), Kxi, Kyi, K�i are the translational and rotational stiffness about x, y and 

z axis of the vertical elements located at coordinates xi and yi from the center of mass.  



Alternatively, if the center of rigidity, CR, is calculated then the stiffness matrix K of structure has the 

following form 
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where  ex and ey are the eccentricities of center of stiffness to the center of mass. Kx, Ky and K� are the 

translational and rotational story stiffness along the x,y and z axis respectively.

E, Ef are the location matrix for the earthquake and the control forces on the structure, 
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F is the matrix of equivalent control forces which should be applied to the structure, directly if active 

control devices are used or indirectly way if semi active control devices are used to control the 

structure.  
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Since the control devices have limited capacity and applied to the structure with time delay, 

saturation delayed function, satF, should be used and given by:  
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where td is the time delay and Fallowable is the maximum capacity of the control device. 

In Eqn. 2.1 P and BP are the vertical loads and their location, in this study this loads are ignored.  

U is the displacement vector with respect to the mass center 
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The geometric properties, eccentricities, the center of mass and rigidity, the location of control devices 

are shown in Fig. 2.1. 

In the state space approach the above Eqn. 2.1 can be written as follows: 
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The matrixes X, A, Bg, Bf are given by: 
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The matrixes �, C, Df, Dg, and v are the output states, the output matrix, the feed forward control force 

matrix, the excitation matrix and the noise matrix, respectively. Consider the case where the output 

variables are the same as the states of the system and there is no application of the control forces to the 

output variables, so the matrixes C, D are the identity and zero matrix, respectively. The noise matrix 

depends on the sensor that is used to measure the response of the system. The above equation can be 

solved numerically in MATLAB software using the simulink toolbox. 

Figure 2.1 Geometrical properties, eccentricities ex, ey, center of mass CM, center of rigidity CR, and 

location of control devices efx, efy.

3 CONTROL ALGORITHM FOR IRREGULAR STRUCTURE  

The control force F is determined by linear state feedback:  
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G is the gain matrix, which is calculated with pole placement algorithm. This algorithm requires 

desired poles location of the controlled system.  

The eigenvalues or poles of a structural system are given by: 

2
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where �i and �i are the cyclic eigenfrequencies and the damping ratio, respectively. If a state space 

formulation is adopted, these poles are obtained directly from the eigenvalues of matrix A: 

� � i i i� � =� ±j���	 �� � �I A (3.3) 

CM

CR

x

y

xr

yr

ex

ey

T1  (x1, y1) T2 (x2, y2) 

T4 (x4, y4) T3 (x3, y3) 

efy

efx

Ly

Lx

Fcy

Control 

device

Fcy

xm

ym 



The representation of the poles in the complex plane is shown in Fig. 3.1 

Figure 3.1 Representation of the poles in the complex plane

Replacing the force F into Eqn. 2.1 the controlled system can be described by: 
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From the above equation it is clear that control of structures causes the change of their stiffness or

damping and, consequently, their dynamic characteristics.  

In this study the control force or the feedback matrix G is estimated in such way that the irregular 

controlled structure has similar dynamic characteristics to a fictitious symmetric structure. The 

procedure of calculating the feedback matrix is as follows: Firstly, a symmetric structure is obtained

by the irregular one, adding at a specific locations new structural elements (shear walls or columns) 

cancelling all the irregularities. In this stage no limitations for the location of the elements exist

because this symmetric structure is a fictitious structure which is not going to be constructed. The 

poles of irregular structure �i, and those from the symmetric structure �i, sym are calculated. Then poles 

of the controlled irregular structure, �i, c, are forced to be equal to the poles of the fictitious symmetric 

structure �i, sym. Then additional equivalent damping is added and the final location of the poles of the 

controlled irregular structure, �i, c, is obtained. Based on these poles the feedback matrix, G, is 

calculated with the pole placement algorithm. The three structures and the relative poles locations in

complex plane are shown in Fig. 3.2 and Fig. 3.3 respectively. Based to the feedback matrix, G, a 

control analysis takes place according to the scheme shown in Fig. 3.4. and the response of the 

controlled and the uncontrolled structure subjected to earthquake excitation is calculated.  

This controlled procedure has as a result that the irregular controlled building behaves like the 

symmetrical one. This procedure can be followed when there is a difficulty of retrofitting or adding 

new structural elements, shear walls, due to architectural or functional limitations. Instant of adding 

new structural element to the initial irregular structure active or semi active devices are installed to the 

irregular structure at a specific locations and as a result is that the controlled structure behaves like the 

symmetrical one.  

4. EXAMPLES AND NUMERICAL EXPERIMENTS  

A single story irregular structure with its geometrical characteristics shows in Fig. 4.1(a) is 

investigated. The mass of the structure is 25 tones. Based to the irregular structure a fictitious 

symmetrical structure where the center of rigidity, CR, is coinciding with the center of mass, CM is 

shown in Fig. 4.1(b). The irregular structure with the control device is shown in Fig. 4.2. The poles of 

each structure are shown in figures Fig. 4.1(a, b) and Fig. 4.2 The control analysis procedure is 
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performed according to the Fig. 3.4 and the response is estimate. The time delay was taken td=1msec, 

and saturation control force capacity Fsat=500kN. The Ducze earthquake was use as the excitation 

signal. The location of the control device was 2m far from the center of mass as shown in Fig. 4.2.  

Figure 3.2 Poles of irregular, symmetrical and controlled structure.

Figure 3.3 Location of poles ion complex plane of irregular, symmetrical and controlled structure.

Figure 3.4 Control procedures for estimating the response of the controlled and the uncontrolled subjected to 

earthquake excitation.

The Displacement, rotation and acceleration response of the controlled and the uncontrolled structure 

are shown in Fig. 4.3. The equivalent control forces in both directions are shown in Fig. 4.4. 

Generally, the response, displacement, rotation, and acceleration are reduced. Specifically, the 

displacement is reduced one order of magnitude. The rotation of the controlled structure is the half of 

the rotation of the uncontrolled structure, while the acceleration is reduced in 20%. From the other 
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hand, in order to have the above reductions, control force should be applied to the structure. The 

maximum control force is 60kN and 40kN for x and y direction respectively.   

       

Figure 4.1 Irregular (a) and the fictitious symmetrical (b) structure irregular, symmetrical and controlled 

structure.

Figure 4.2 Irregular structure with the control device.
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Figure 4.3 Displacement along x and y direction (a), (b), rotation (c) and acceleration in x direction (d) of the

controlled and the uncontrolled structure.
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Figure 4.4 The equivalent control force in both directions. 
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5. SUM M ARY AND CONCLUSIONS 

A control algorithm for irregular structures subjected to earthquake excitation was proposed. According to this 

algorithm the poles of the controlled irregular structure are forced to be equal with the poles of a fictitious 

symmetrical structure. Then the feedback matrix is calculated with pole placement algorithm and the control 

forces which should be applied to the structure are obtained.  The proposed control procedure makes the 

irregular structure together with control devices behave like a symmetrical one. The proposed procedure was 

applied to one story concrete structure in three directions, two translational and one rotation. From the numerical 

results it is shown that the above control procedure is efficient in reducing the response of irregular building 

structures, with small amount of required control action. 
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