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SUMMARY:  

Gutenberg and Richter showed that magnitude-recurrence relationship may be represented by a linear 

relationship when the log of annual rate of exceedance was plotted against magnitude.  This type of recurrence 

model has been in use because of its simplicity and because it fits the data reasonably well over a useful range of 

magnitudes of engineering interest.  A quadratic log frequency relationship between magnitude and the mean 

annual rate has been proposed by others and shown to fit the available data well in the high magnitude range of 

the magnitude-recurrence relationship. UHS (Uniform Hazard Spectra) using a quadratic log frequency and the 

linear relationship,  has been developed and compared. It is shown that using a linear relationship would result in 

a more conservative design when defining UHS for ductility level earthquakes (DLE) (return periods > 5,000 

years). However, UHS for strength level earthquakes (SLE) (return periods <1000 years) are not affected greatly 
by the use of a linear relationship.   
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1. INTRODUCTION 
 

How often do earthquakes occur? Does some kind of pattern exist in the time scale at which 
earthquakes are known to occur? In a seismologically active region earthquakes occur at irregular 

intervals of time. It is fairly obvious that in order to extract a meaningful pattern, the length of the 

record must be reasonably large. The longer the record the better it is. Historical records are dated and 
hence it is possible for the seismologists to analyse and assess the recurrence relationship.  

 

Gutenberg and Richter (1954) introduced the magnitude-recurrence relationship gathering data from 

earthquakes in the southern California region. The data (spread over a certain length of time) was 
organised in a manner to reflect the number of earthquakes that exceeded a certain magnitude. Also 

from the organised data, the mean annual rate of being exceeded, M , of an earthquake magnitude, 

M , was defined as the occurrences greater than M divided by the length of the time period. Or in 

other words the average rate at which an earthquake of some size will be exceeded. The reciprocal of 
the mean annual rate of being exceeded was referred to as the mean return period of the earthquake. It 

was found that the logarithm of the annual rate of exceedance of southern California earthquakes, 

plotted against earthquake magnitude, resulted in a linear relationship. They proposed a relationship of 

the form: log m a bm   . Where a  and b are field constants for a particular region.  

 

The validity of Gutenberg-Richter relationship has been questioned by various investigators (Schwartz 

and Coppersmith, 1984, Youngs and Coppersmith, 1985).  

 
Because of its simplicity and as it fits the observed earthquake data reasonably well over a useful 

range of engineering interest, this model has been found to be convenient and is in general use today. 

 

 



 

1.1 Background 

 

Use of Quadratic Form:  

 
One of the concerns regarding the use of a linear relationship, if un-truncated, is that it normally over- 

estimates the occurrence of large events and because of the scattering of data associated at the upper 

bound range, it does not reflect the true state.  
 

Shlien and Toksoz (1970) have shown that, at least for magnitudes for which reliable data are 

available (USCGS, Duda, 1965), a quadratic log frequency relationship fits well.  
 

Merz and Cornell (1973) introduced a more general case of a quadratic magnitude-frequency 

relationship with a finite upper-bound, um .  

 ' '

10 1 0 2log ( ) ( )m ua b m m b m m                                 (1.1)                                                                        

 
And the cumulative distribution function as:  

 

  * 2 2

1 1 0 2 0( ) [1 exp{ ( ) ( )}]M mF m P M m k m m m m                                        (1.2) 

[Both M and m are used as symbols for magnitudes. In general, the notation adopted is that the upper 

case is used when variable referred to is a random variable; the lower case is used when referring to 
observed values of that variable].  

 

Where  
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1.2 Outline of the Paper 

 

1. The quadratic form for magnitude recurrence relationship is investigated next. The quadratic 

form adopted is compared with the database of USCGS catalogue and those obtained by Duda 
and Gutenberg (1964) over a period from 1918-1968 (see Fig. 1). 

 

2. On the basis of the quadratic relationship adopted (step 1) uniform hazard spectra for return 
periods for SLE (500 and 1000 years) and DLE (10,000 years) are derived next.  

 

3. UHS based on a linear relationship which is a close approximation of the dataset, except in the 
high magnitude range (see Fig. 1) are derived next.   

 

4. The numerical engine for developing the UHS is the Monte Carlo simulation technique (Sen, 

2006, 2009) and is briefly outlined here. 
 

5. In the concluding part, the effects of the quadratic form on the UHS, which is the main 

objective of this paper, are discussed and conclusions drawn. 
 

 



 

2. QUADRATIC MAGNITUDE-RECURRENCE RELATIONSHIP 

 

Referring to equation (1.1), the more general case of a quadratic magnitude-frequency relationship 

with a finite lower bound 
0m and an upper-bound 

um (proposed  by Merz and Cornell, 1973) is used 

here and expressed as: 
 

2

10 0log 3.295 0.20( ) 0.298( )m um m m m                                                                 (1.3) 

 

The quadratic form adopted is compared with the database of USCGS catalogue and those obtained by 

Duda and Gutenberg (1964) over a period from 1918-1968 and is shown in Fig.1. 
[The constants have been modified to suit the USCGS and Duda (1965) data – as presented by Shlien 

and Toksoz (1970)].    

 

 
 

Figure 1. Plot of USCGS Data Points and the Quadratic Recurrence Relationship Adopted 

 

 

3. CUMULATIVE DISTRIBUTION FUNCTION (CDF) 
 

CDF obtained from equation (1.2) with  0m =4 and um = 8 is shown in Fig.2 (Q is the probability of M 

being exceeded).  
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Figure 2. Cumulative Distribution Function for Quad-Mag Recurrence Relation 
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3.1.  General Scheme – Monte Carlo Simulation  

 

Monte Carlo simulation is an established technique to solve probabilistic models. The probabilistic 

model outlined by Cornell (1968) may be solved by the Monte Carlo simulation process. The 
numerical approach is different. It mirrors real life events as may be evinced from the computational 

scheme shown in the flow chart (see Fig.3).  
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Figure 3. General Scheme of Monte Carlo Simulation 

 

All computations for generating plots of exceedance of acceleration against return periods, were 

carried out with the mathematical software Mathcad 14 . The software has a random number generator 

incorporated within which is used to obtain a point estimate for each independent input variable.  

 

3.2 Preliminary Steps 

 
The preliminary steps are as follows: 

 

1. Fault Line 

 
As an example the following were considered:  

 

The fault line is 650 km long and earthquakes can occur anywhere along the fault line. Thus, uniform 
random distribution may be assumed. The following numerical results are obtained for a site located a 

minimum surface distance,  , of 40 km from a line source of earthquakes at a depth of 20 km. In the 

above intensity relationship R  is related to the position where the earthquake originates which 

happens to be randomly distributed. 
 

2. Relationship Used  

 
Before we consider constructing the uniform hazard spectra for a site, we must know the probability of 

peak ground motion (peak acceleration, velocity etc) being exceeded. Cornell’s probabilistic 

methodology outlined above can be applied on any functional relationship between site ground motion 

variable Y  (peak acceleration, velocity and displacement), and M and R . 

 

Though not quite appropriate this would nevertheless be adequate for illustrating the effects of the 

quadratic form on the UHS, which is the main objective of this paper. The functional relationship 
provided by McGuire (1974) working on data from sites in Western USA, is shown below: 
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The constants for the above equation are shown in Table 3. 
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(with permission, reproduced from Dowrick, 1987) 
 

Table 3. McGuire’s Attenuation Expressions for Spectral Acceleration with 5% Damping (1974) 

 

Period (s)       
'

1b         1b             2b         3b        Coeff. of  Var. of 

a
S  

     0.1          1610      3.173       0.233         1.341              0.651             

        0.2          2510      3.373       0.226         1.323              0.577 

        0.3          1478      3.144       0.290         1.416              0.560 

        0.5          183.2     2.234       0.356         1.197              0.591 

        1.0          6.894     0.801       0.399         0.704              0.703 

        2.0          0.974    -0.071       0.466         0.675              0.941 

        3.0          0.497    -0.370       0.485         0.709              1.007 

        4.0          0.291    -0.620       0.520         0.788              1.191                                

 

 

3.3 Monte Carlo Simulation Plots for Peak Ground Acceleration 

 

We can apply the Monte Carlo process to derive the plot for peak ground acceleration vs. return 
period, R , (or probability of being exceeded). The ground acceleration exceedance curve for period = 

0.2 sec is shown in Fig. 4. 
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Figure 4. Ground Acceleration Exceedance Curve for Period = 0.2 sec 



 

3.4 Uniform Hazard Response Spectrum (UHRS) 

 

3.4.1 Quadratic-Magnitude Recurrence Relationship 

 
Step 1 

Calculation of peak ground accelerations for periods 0.1 – 4.0 sec (as shown in Table 3) is carried out 

first (plots not shown here) by modifying the Mathcad , V14 sheets. 
  

Step 2 

The concept and methodology is shown in Fig. 5. 
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Figure 5. Construction of UHRS 

 

Step 3 

Finally, we follow the plan outlined in Fig. 5 for constructing the UHRS. The plot for UHRS for a 

return period of 500, 1000 and 10,000 years is shown in Fig. 6.  

3.4.2 UHRS - Linear Relationship 

The linear relationship adopted for comparison with the quadratic relationship is shown in Fig.1. The 

relationship is of the form: 10 0log 3.856 1.039( )m m m    . 
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Figure 6. Plot of UHRS (Return Period: 500, 1000 and 10,000 years) 

 

 



 

4. CONCLUDING REMARKS 

 

Comparison of the UHS developed with the quadratic and the linear relationship is shown in Figs. 7, 8 

and 9. 
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Figure 7. 500 year Return Event 

 

1,000 year return event 
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Figure 8. 1,000 year Return Event 

 

10,000 year return event
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Figure 9. 10,000 year Return Event 

 

The quadratic relationship predicts fewer events of high magnitudes and as expected, Fig. 9 shows the 

difference in using a quadratic instead of a linear magnitude-frequency relationship and is significant 
for the 10,000 year return event, as ground accelerations for this low-risk event are higher.    



 

 

In the UHRS for the 500 and 1,000 year return period, where ground accelerations expected are much 

lower, and there is no appreciable difference in UHS from an engineering perspective (see Figs. 7 and 

8).  
 

Merz and Cornell (1973) had arrived at a similar conclusion when risks associated with high ground 

accelerations were compared with the two magnitude-frequency recurrence relationship.  
 

 
ACKNOWLEDGEMENT 

 The author would like to thank the Granherne and KBR management for permission to present this paper. 

 
 

REFERENCES 

 

 Cornell, C.A. (1968), ‘Engineering Seismic Risk Analysis’, Bull. Seismol. Soc. Amer., 58, 1583-1606.  

Dowrick, D.J., (1987), ‘Earthquake Resistant Design’, John Wiley & Sons, Chichester.  

Duda, S.J. (1965), ‘Secular Seismic energy Release in the Circum-Pacific belt’, Tectonophysics, 2(5), 409-452. 

Gutenberg, B. and Richter, C.F. (1954), ‘Seismicity of the Earth’, Princeton University Press. 

McGuire, R.K. (1974), ‘Seismic structural response risk analysis incorporating peak response regressions on  

earthquake magnitude and distance’, Res. Report R74-51, Dept of Civil Engineering, Massachusetts Institute 

of Technology. 

Merz, H.A. and Cornell, C.A. (1973), ‘Seismic Risk Analysis Based on a Quadratic Magnitude-Frequency Law’,  

Bull. Seismol. Soc. Amer., Vol 63, No. 6, 1999-2006. 
Schwartz, D. P. and Coppersmith, K. J. (1984), ‘Fault behaviour and characteristic earthquakes:examples from   

the Wasutch and San Andreas fault zones’ J. Geophysical Research, Vol 89, No B7, 5681-5698.   . 

Sen, T.K., (2006), ‘Construction of Uniform Hazard Response Spectra Using Monte Carlo Simulation’, Proc. First  

European Conf.  Earthquake Engineering and Seismology, Geneva, Switzerland, 3-8 Sept. 2006.  

Sen, T.K., (2009), ‘Fundamentals of Seismic Loading on Structures’, John Wiley & Sons, Chichester, UK. 

Shlien, S. and Toksoz, M.N. (1970), ‘Frequency-Magnitude Statistics of Earthquake Occurrences’, 

Earthquake Notes, Vol. XLI, No. 1. 

Youngs, R. R. and Coppersmith, K. J. (1985), ‘Implications of fault slip rates and earthquake recurrence models  

to probabilistic seismic hazard estimates’. Bull. Seismol. Soc. Amer., Vol. 75, 939-964.   

 

  
 


