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SUMMARY: 

In this paper the vibration and frequency relationships of the coupled bending-torsion three-dimensional, 

asymmetric beam is studied. Firstly, uncoupled bending and torsion vibrations of two-dimensional thin-walled 

beams are investigated separately and the governing differential equations of motion are solved exactly. This 

process leads to the bending and torsion dynamic stiffness matrices and uncoupled natural frequencies. The same 

procedures are done for the coupled bending-torsion three-dimensional thin-walled beam. Bending-torsion 

dynamic stiffness matrix is derived as well as the coupled natural frequencies. It is then shown how the coupled 

natural frequencies are obtained from the corresponding uncoupled values using an exact relationship called 

relational matrix. This approach presents a simple and accurate method for calculation the coupled natural 

frequencies of the element.  
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1. INTRODUCTION 

 

Coupled bending-torsional vibration of beams has received much attention, typified by [1] , [2] , [3] , 

[4]. These authors developed the theory using dynamic stiffness method which relates the nodal forces 

to the corresponding nodal displacements. The coupling between the bending and torsional vibratory 

modes occurs when shear centre and mass centre of the beam cross-section are not coincident. This 

has been done to the Timoshenko beam members [5], [6]. Existence of axial load has a great influence 

on the vibration and frequencies of beam elements [7], [8].  

 

Thin-walled beams, among the beam elements, are basic structural elements which have been 

considered widely by many authors. Li Jun et al. [9], [10] employed the transfer matrix method to 

develop the theory and included the effect of axial load and warping stiffness. Kim Moon-Young et al. 

[11], [12] presented the potential energy method to study the thin-walled beams. Dynamic stiffness 

matrix method is a common way to formulate the coupled vibration of thin-walled beams studied by 

Leung [13] and Banerjee et al. [14]. The application of the thin-walled beams was presented by Rafezy 

and Howson [15] and Bozdogan [16] in the shear-wall multi-storey structures which considered the 

whole structure as a cantilever. 

 

The relational model that links the uncoupled natural frequencies to the coupled ones was presented by 

Rafezy and Howson in shear-torsion [17] and axial-torsional [18]  beam elements. In the work that 

follows, the same theory is extended to the bending-torsional thin-walled beams. The natural coupled 

frequencies are established exactly from the dynamic stiffness matrix and the uncoupled ones through 

the relational matrix. The results are compared to show the accuracy of the proposed method. Initially 

the two-dimensional bending and torsional motion of the beam element is considered to derive the 

uncoupled natural frequencies, then they are related to the corresponding coupled values. 

 

2. TWO-DIMENSIONAL BEAM 



 

Figure 1 shows a bending beam of length L whose longitudinal, mass and elastic axes all coincide with 

the z axis. By definition the beam is only allowed to undergo lateral deformation in the x-z and y-z 

planes. Figure 2 also shows a torsion beam that can only rotate in torsion about its longitudinal axis, or 

in x-y plane. 

 

 
(a) 

 
(b) 

 

Figure 1. Co-ordinate system and positive sign of a two-dimensional bending beam in the local x-z(y-z) plane: 

(a) Amplitudes of nodal forces and displacements; (b) Amplitudes of forces and displacements associated with 

an element length of beam  

 

 
(a) 

 
(b) 

 

Figure 2. Co-ordinate system and positive sign of a two-dimensional torsion beam in the local x-y plane: (a) 

Amplitudes of nodal forces and displacements; (b) Amplitudes of forces and displacements associated with an 

element length of beam 

 

The dynamic equilibrium equations can be written as: 
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Where )(),( zUzQx
 and )(),( zVzQy

 are the amplitudes of shear force and lateral displacement in the 

x-z and y-z planes, respectively; )(),( zΦzT  are the corresponding terms of torsion in the x-y plane, m 

is the uniformly distributed mass/unit length of the beam;
 
ω  is the circular frequency and mr is the 

polar mass radius of gyration of the cross section. From stress/strain relationships: 
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Where B(z)zMzM yx and)(),(  are the bending moments in the x-z and y-z planes and the bi-moment 

in the x-y plane; 
wyx EIEIEI and,  are the flexural rigidities in the x-z and y-z planes and the warping 

rigidity in x-y plane; GJ  is the saint-venant rigidity in x-y plane; (z)Φzz yx and)(),( θθ are the bending 

rotations in the x-z and y-z planes and the gradient of twist in the x-y plane, respectively. Introducing 

the non-dimensional parameter Lz=ξ and combining Equations (2.1) to (2.4) gives the required 

governing differential equations of motion as 
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The boundary conditions based on the sign conventions of Figure.1,2 are defined as 
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1ΦΦ ′=′                                         (2.8) 

At 1=ξ  
2UU = , 

xx 2θθ = , 
2VV = , 

yy 2θθ = , 
2ΦΦ = , 

2ΦΦ ′=′
                                     

(2.9) 

At 0=ξ
xx QQ 1−= ,

xx MM 1= ,
yy QQ 1−= ,

yy MM 1= , 
1TT −= , 

1BB −=                          (2.10) 

At 1=ξ  
xx QQ 2= ,

xx MM 2−= , 
yy QQ 2= , 

yy MM 2−= , 
2TT = , 

2BB =                          (2.11) 

 

Solving the Equations (2.5a,b) using the analytical methods similar to [17] and considering the 

boundary conditions as above,  gives the exact stiffness matrix of the two-dimensional bending beam 

as 
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In the similar fashion the exact stiffness matrix of the two-dimensional torsion beam is written. 
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Where 
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It can be proven that the St. venant rigidity, GJ, is negligible in the thin-walled beams with open cross-

section, in this kind of beams therefore, the Equations.(2.5a-c) are similar so the exact stiffness matrix 

of the two-dimensional bending and torsion beam is the same as Equation (2.12) in which 
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ϕββββθθθ or,or,or, yxyx Φ'ΦVUW ===                                                        (2.19a-c) 

 

3. THREE-DIMENSIONAL BANDING-TORSION BEAM 
 

Figure 3 shows a typical, asymmetric cross-section of a uniform thin-walled beam of length L. The co-

ordinate system is chosen so that the z-axis coincides with the elastic axis and therefore passes through 

the shear centre, S, of each cross-section. The x and y axes then correspond to the principle axes of the 

cross-section, with the origin of the system located at the left hand end of the member. In similar 

fashion, the centre of mass of each cross-section, C, lies on the mass axis that runs parallel to the 

elastic axis and has co-ordinates (xc,yc,z).  

 



 
 

Figure 3. Co-ordinate system and notation for a three dimensional beam of length L 

 

During vibration, the displacement of the mass centre at any time t in the x-y plane can be determined 

as the result of a pure translation followed by a pure rotation about the centre of shear, S, see Figure 3.  

During the translation phase the centre of shear moves to S′ and the centre of mass C moves to C′, 

displacements in each case of u(z,t) and v(z,t) in the x and y directions, respectively. During rotation, 

the mass centre moves additionally from C ′  to C ′′ , respectively, an angular rotation of ϕ(z,t) about S′. 

The resulting translations, ),( cc vu  of the mass centre in the x and y directions, respectively, are given 

by  

 

),(),(),( tzxtzvtzv cc ϕ+=        and        ),(),(),( tzytzutzu cc ϕ−=                                     (3.1a,b) 

 

The governing equations of motions can be obtained from Figure.4. 

 

 
(a) 

 
(b) 

 

Figure 4.  Co-ordinate system and positive sign convention for a three dimensional beam of length L.   (a) Nodal 

forces and displacements; (b) Forces and displacements associated with an elemental length of the beam. 

 

Equating the resultant shear forces to the corresponding mass accelerations gives 
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Where m is the uniformly distributed mass/unit length of the beam, and mr is the polar mass radius of 

gyration of the cross-section. 

 

The appropriate stress/strain relationships are given by 
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Substituting Equationss. (3.3) into (3.2) give 
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Equations. (2.4) are the governing differential equations of motion. 

 

Assuming harmonic motion, the instantaneous can be written as  
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Where  )(zU   ، )(zV and )(zΦ   are the amplitudes of sinusoidally varying displacements. 

 

Substituting equations (3.5) into (3.4) and re-writing in non-dimensional form gives 
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In the cases that the St. venant rigidity, GJ, is negligible as explained in the previous section, the 

parameter, 
2

ϕγ  , becomes zero so that  Equations.(3.6) can be re-written in the following matrix form 
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And 
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Equations. (3.8) can be combined into a twelfth-order differential equation by eliminating any two 

displacements. Hence 
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where  W = U, V or Φ . 

 

The solution of Eq. (3.8) is found by substituting the trial solution 
ξξ aeW =)(  to yield the 

characteristic equation 
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Now it can be proven that Equation (3.12) has three positive real roots
2
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twelve required values of a can be obtained from Equation (3.13) as 
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The general solution for )(ξW can then be written in terms of )(ξU , )(ξV  and )(ξΦ as 
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Where 
121 CC −  are constant coefficients, ξjj rc coshˆ = , ξjj rs sinhˆ = , ξjj rc cos= , ξjj rs sin=  

and the relationships between the equations, 
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Using the Equations.(3.15) and Equations.(2.4) and Due to the boundary conditions, Equations.(8) and 

(9), The nodal displacements can be written in the matrix form as 
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The vector of constants, c, can be obtained from (3.17) 
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Using the Equations.(2.2) and Equations.(2.3) and the boundary conditions as Equations.(2.10) and 

(2.11) the nodal forces are written as  
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Where 
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The required dynamic stiffness matrix for a beam with doubly asymmetric cross-section can then be 

obtained from Equations. (3.19) and (3.20) as 
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4. CLAMPED-CLAMPED MEMBER 
 

The natural frequencies of a member are those values of frequency that cause the determinant of its 

dynamic stiffness matrix to be zero. As an example the clamped-clamped frequencies could therefore 

be determined easily using Equations. (3.22) and imposing the boundary conditions 021 == dd .  

However, if only the clamped-clamped frequencies are required, it is much simpler to impose the same 

boundary conditions on Equations. (3.17). After a minor simplification, this leads to the condition 
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It is easy to show that the left-hand determinant cannot be zero for non-trivial solutions. Hence, the 

condition that must be satisfied is  
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One solution of Eq.(4.2), calculated to arbitrary accuracy, is  
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In similar fashion, when there is no coupling between the bending and torsional motion i.e. 

0== cc yx , the uncoupled natural frequencies of the member emanating from Equation (3.12) must 

also satisfy Equation (4.2) and hence 
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Using Equations.(4.3) and (4.5) gives 
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Substituting Equations. (4.3) and (4.6) into Equation (3.12) and re-arranging yields the required 

relationship between the uncoupled and coupled natural frequencies of the beam as  
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Where ϕωωω and, yx are the uncoupled natural frequencies of the two-dimensional symmetric beam 

element and )( 1,2,3=jjω  are the coupled natural frequencies of the three-dimensional asymmetric 

beam elemen Equation (4,7) is the required exact relationship between the coupled and uncoupled 

natural frequencies of the beam. This relationship can be obtained for the other boundary conditions 

easily. 
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