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SUMMARY:

In this paper the vibration and frequency relationships of the coupled bending-torsion three-dimensional,
asymmetric beam is studied. Firstly, uncoupled bending and torsion vibrations of two-dimensional thin-walled
beams are investigated separately and the governing differential equations of motion are solved exactly. This
process leads to the bending and torsion dynamic stiffness matrices and uncoupled natural frequencies. The same
procedures are done for the coupled bending-torsion three-dimensional thin-walled beam. Bending-torsion
dynamic stiffness matrix is derived as well as the coupled natural frequencies. It is then shown how the coupled
natural frequencies are obtained from the corresponding uncoupled values using an exact relationship called
relational matrix. This approach presents a simple and accurate method for calculation the coupled natural
frequencies of the element.
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1. INTRODUCTION

Coupled bending-torsional vibration of beams has received much attention, typified by [1], [2], [3] .
[4]. These authors developed the theory using dynamic stiffness method which relates the nodal forces
to the corresponding nodal displacements. The coupling between the bending and torsional vibratory
modes occurs when shear centre and mass centre of the beam cross-section are not coincident. This
has been done to the Timoshenko beam members [5], [6]. Existence of axial load has a great influence
on the vibration and frequencies of beam elements [7], [8].

Thin-walled beams, among the beam elements, are basic structural elements which have been
considered widely by many authors. Li Jun et al. [9], [10] employed the transfer matrix method to
develop the theory and included the effect of axial load and warping stiffness. Kim Moon-Young et al.
[11], [12] presented the potential energy method to study the thin-walled beams. Dynamic stiffness
matrix method is a common way to formulate the coupled vibration of thin-walled beams studied by
Leung [13] and Banerjee et al. [14]. The application of the thin-walled beams was presented by Rafezy
and Howson [15] and Bozdogan [16] in the shear-wall multi-storey structures which considered the
whole structure as a cantilever.

The relational model that links the uncoupled natural frequencies to the coupled ones was presented by
Rafezy and Howson in shear-torsion [17] and axial-torsional [18] beam elements. In the work that
follows, the same theory is extended to the bending-torsional thin-walled beams. The natural coupled
frequencies are established exactly from the dynamic stiffness matrix and the uncoupled ones through
the relational matrix. The results are compared to show the accuracy of the proposed method. Initially
the two-dimensional bending and torsional motion of the beam element is considered to derive the
uncoupled natural frequencies, then they are related to the corresponding coupled values.

2. TWO-DIMENSIONAL BEAM



Figure 1 shows a bending beam of length L whose longitudinal, mass and elastic axes all coincide with
the z axis. By definition the beam is only allowed to undergo lateral deformation in the x-z and y-z
planes. Figure 2 also shows a torsion beam that can only rotate in torsion about its longitudinal axis, or
in x-y plane.
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Figure 1. Co-ordinate system and positive sign of a two-dimensional bending beam in the local x-z(y-z) plane:
(a) Amplitudes of nodal forces and displacements; (b) Amplitudes of forces and displacements associated with
an element length of beam
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Figure 2. Co-ordinate system and positive sign of a two-dimensional torsion beam in the local x-y plane: (a)
Amplitudes of nodal forces and displacements; (b) Amplitudes of forces and displacements associated with an
element length of beam

The dynamic equilibrium equations can be written as:

-ma*U(z),

40.(9) _ 9,@ =-mw’V(z) and
dz dz

dT'(2) _ P mae*d(z) (2.1a-c)
dz "



Where Q (2),U(z) and Q (z),V(z) are the amplitudes of shear force and lateral displacement in the
x-z and y-z planes, respectively; T(z),®(z) are the corresponding terms of torsion in the x-y plane, m

is the uniformly distributed mass/unit length of the beam; @ is the circular frequency and r,,is the

polar mass radius of gyration of the cross section. From stress/strain relationships:
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Where M (z),M (z)and B(z) are the bending moments in the x-z and y-z planes and the bi-moment
in the x-y plane; EI ,El and EI,, are the flexural rigidities in the x-z and y-z planes and the warping
rigidity in x-y plane; GJ is the saint-venant rigidity in x-y plane; 6 (z),6, (z)and @(z)are the bending

rotations in the x-z and y-z planes and the gradient of twist in the x-y plane, respectively. Introducing
the non-dimensional parameter £ = z/L and combining Equations (2.1) to (2.4) gives the required

governing differential equations of motion as

(D* @’ BHUE) =0, (D* -’ B})V(§) =0 and (D* -y,D* -’ B, )P(&) =0 (2.5a-c)
Where
2_mL4 2_mL4 d 2_mL4 2 (2.6a,b)
ﬂx_EIX’ ﬂ\_Eil} an IB(p_EIW rm : ’
vi=2lr and D :jf (2.7a.b)

The boundary conditions based on the sign conventions of Figure.1,2 are defined as

AtE=0U=U,,0=6,.V=V,0,=6,,0=0, ® =] (2.8)
AtE=1U=U,,6,=6,.v=v,,6,=6,,0=0,, &=, (2.9)
At§=09 =-0,.M =M, .0 =-0, .M, =M, T=-T, B=-B, (2.10)
Até=10=0,.M,=-M,,0=0,, M, =-M, ,T=T,, B=B, (2.11)

Solving the Equations (2.5a,b) using the analytical methods similar to [17] and considering the
boundary conditions as above, gives the exact stiffness matrix of the two-dimensional bending beam
as

o) 0 By (wp)’ 0 -By(wp)’
M| _ —Awp 0 Awp 0
o, —B(@wp)’ sinh\Jwf - By(wp)’ cosh\JwB - B\(wp)’ sinJwB By (@p)’ cos\wp (2.12)
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In the similar fashion the exact stiffness matrix of the two-dimensional torsion beam is written.

0 Bw\/gl 0 - Bw\/?z

—An 0 AL, 0
_B¢\/?1 sinh\/?1 —i—Cq,\/;1 sink\/;l -B, 7 cos}\/?l +Cq,\/;1 COS}\/?I -B, T sin\/?2 —Cm/?2 Sin\/?2 Bq,\/?2 cos\/?2 +C¢\/?2 cos\/?2
AL cosh\/?1 AL sinh\/;1 —A(pz'zcos\/?2 -Af, sin\/?2

1 1

0 0 o
1 1 1
0 o ’ ACRIY
cosh/z; sinh/7; cos/z, sinyz, @,
Hasinnfs —[geoshfs — Jasin/n - ncoys | (24
(2.13)
Where
Q0=Q,0orQ, M=M_orM,, A=AorA, and B=B orB, (2.14a-d)
El
A=t A =S a4, - B (2.150-c)
_ EIX _ EI y _ EIW d _ GJ (2 16a—d)
S B Bemm e Gemp |
1 1
T, = 5(7’; +./7, +40’B;), T, = 5(7’; —\7, t40°B;) (2.17a-c)
and ﬁ = ﬁx’ﬁy

It can be proven that the St. venant rigidity, GJ, is negligible in the thin-walled beams with open cross-
section, in this kind of beams therefore, the Equations.(2.5a-c) are similar so the exact stiffness matrix
of the two-dimensional bending and torsion beam is the same as Equation (2.12) in which

0=0.0,oeT M=M_M orB A=A, ,A orA, and B=B B orB, (2.18a-d)
W=UVor®d 6=6,.0 o0r®" [=p, B orp, (2.19a-c)

3. THREE-DIMENSIONAL BANDING-TORSION BEAM

Figure 3 shows a typical, asymmetric cross-section of a uniform thin-walled beam of length L. The co-
ordinate system is chosen so that the z-axis coincides with the elastic axis and therefore passes through
the shear centre, S, of each cross-section. The x and y axes then correspond to the principle axes of the
cross-section, with the origin of the system located at the left hand end of the member. In similar
fashion, the centre of mass of each cross-section, C, lies on the mass axis that runs parallel to the
elastic axis and has co-ordinates (x.,y.,z).
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Figure 3. Co-ordinate system and notation for a three dimensional beam of length L

During vibration, the displacement of the mass centre at any time # in the x-y plane can be determined
as the result of a pure translation followed by a pure rotation about the centre of shear, S, see Figure 3.
During the translation phase the centre of shear moves to S’ and the centre of mass C moves to C',
displacements in each case of u(z,f) and v(z,f) in the x and y directions, respectively. During rotation,
the mass centre moves additionally from C” to C”, respectively, an angular rotation of ¢(z,7) about S’.
The resulting translations, (u_,v,) of the mass centre in the x and y directions, respectively, are given

by
v.(z2,t)=wz,t) +x.((z,1) and u. (z,0)=u(z,t) -y @z,1) (3.1a,b)

The governing equations of motions can be obtained from Figure.4.
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Figure 4. Co-ordinate system and positive sign convention for a three dimensional beam of length L. (a) Nodal
forces and displacements; (b) Forces and displacements associated with an elemental length of the beam.

Equating the resultant shear forces to the corresponding mass accelerations gives
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Where m is the uniformly distributed mass/unit length of the beam, and r, is the polar mass radius of

gyration of the cross-section.

The appropriate stress/strain relationships are given by

’u(z,1)

0. (z,t)=—EI, T
3

0, (z,1)=—EI, aLi’t)

GJ oP(z,1)
0z

3
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Substituting Equationss. (3.3) into (3.2) give

4 2 2
EL J u(f,t)+m3 u(f,t)_ v 0 (p(zz,t) o
0z ot ot
4 2 P
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Equations. (2.4) are the governing differential equations of motion.
Assuming harmonic motion, the instantaneous can be written as

u(z,t) =U(z)sinax
v(z,t) =V (z)sin wt
O(z,t) =D(z)sinax

Where U(z) ¢« V(z)and @(z) are the amplitudes of sinusoidally varying displacements.

Substituting equations (3.5) into (3.4) and re-writing in non-dimensional form gives

U”(&)-Blo’U&) +y fio’d(&)=0
V(&) - Bla’V(E)—x B’ B(&)=0
D" ()= Y@ (E)+ (1)) y Bo@U (&)= (/1)) x Bo’V (E)— B’ D(E) =0

Where

,  mL , _ mL , aml! and , GJ
pr=ri Bl=T o Bi=ni Vo= L

x y w w

(3.32)

(3.3b)

(3.3¢)

(3.4a)

(3.4b)

(3.4¢)

(3.5a)
(3.5b)
(3.5¢)

(3.6a)
(3.6b)
(3,6¢)

(3.7a-c)



In the cases that the St. venant rigidity, GJ, is negligible as explained in the previous section, the

parameter, }/; , becomes zero so that Equations.(3.6) can be re-written in the following matrix form

U
AlVie) =0 (3.8)
D(S)
Where
b -p 0 B
A=l 0 b =B —xp (3.9)
/ey By —Wrx By b -p;
And
p =L (3.10)
@ d&*

Equations. (3.8) can be combined into a twelfth-order differential equation by eliminating any two
displacements. Hence

AW(&)=0 (3.11)
where W=U, Vor @.

The solution of Eq. (3.8) is found by substituting the trial solution W (&) = e to yield the
characteristic equation

Al=0 (3.12)

In which

4

pr=9 (3.13)

2

Now it can be proven that Equation (3.12) has three positive real rootsh”, b; and b; . Hence the

twelve required values of a can be obtained from Equation (3.13) as
tr and *ir; (j=1.23), where r, = Jwb, and i=+-1 (3.14)

The general solution for W (&) can then be written in terms of U (&), V(&) and @(&) as

3

UE) =D 14(Cy, 16, +Cy 8, +Cypsc, +Cy e8) (3.152)
j=1
3

V(E) =D 10(C, 08, +Co 8,4 Cypse, +Cy i) (3.15b)
j=1
3

DE) =D (Cy,8;+Cy 8, +Cy 50, +Cy i 6S)) (3.15¢)
j=1



Where C, -C,, are constant coefficients, ¢; =coshr,§, §; =sinhr,§, ¢, =cosr;§, s, =sinr;§

and the relationships between the equations, t;f and tjv. can be found from Equation (3.8) as

2 2
=Yl and = fvﬁyz (3.16a,b)
' bi =B, bi =B,

Using the Equations.(3.15) and Equations.(2.4) and Due to the boundary conditions, Equations.(8) and
(9), The nodal displacements can be written in the matrix form as

E E 0 0
d| | 0 0 ER ER ||C, or d=sc (3.17a,b)
sz_ EC EC ES ES {C}

ERS —ERS ERC ERC

Where
(U, ] (U, ] [c el
1 2 Cl C2 tlu t;t t;t
Vl ) Vz ) C3 ) C4 ) E — v v Vol
d = (157 d. = (152 C = 05 c - Cs = t1 tz t3
: glx ’ 62; - C7 < C8 1 1 1
61 ¥y 62)‘ C‘J C]O
,®,7, ,45'2, 7011, _012_
| rn 0 0 cosr, 0 0 coshr, 0 0
R=—|0 r, 0)°C=| 0 cosr, 0 |° C=| o0 coshr, (U
0 0 n 0 0 cos r, 0 0 coshr,
sinr, 0 0 sinh r, 0 0
S = 0 sin r, 0 ’ SA = 0 sinh T, 0 (318)
0 0 sinn 0 0 sinh r,
The vector of constants, ¢, can be obtained from (3.17)
E E 0 o 1"
c,] | o 0 ER ER | [d, (3.19)
c,| | E€ Ec ES ES d,

ERS —-ERS ERC ERC

Using the Equations.(2.2) and Equations.(2.3) and the boundary conditions as Equations.(2.10) and
(2.11) the nodal forces are written as

0 0 o -0
» -M M 0 0 |[c, or f =bc (3.20a,b)
[pjz -0§ -0s -0C oc {C}
MC -MC MS -MS

Where



_Qu | _QZX |
0, 0,, tlurl33x t;’r;Br t;’r;Br nrA, A, GrA,
- T, ’p2= T, |”’Q0= t,":ﬁBy t;’:;By t;’Cfo M= tl"i;ley t;’ZfAy t;’r;Ay (3.21)
M, M, r Bq, Ty Bq, r; Bq, A, 7, A¢ ry A,
M, M,,
| B, | | B, |

The required dynamic stiffness matrix for a beam with doubly asymmetric cross-section can then be
obtained from Equations. (3.19) and (3.20) as

0 0 o -0 E E 0 0
p] |-M M 0 0 0 0 ER  ER d,
p,| |-0§ -0s -9oC oc || EC EC ES ES d,

MCE -MC MS -MS||ERS -ERS ERC ERC
(3.22a,b)

or
f=bs'd=kd

4. CLAMPED-CLAMPED MEMBER

The natural frequencies of a member are those values of frequency that cause the determinant of its
dynamic stiffness matrix to be zero. As an example the clamped-clamped frequencies could therefore
be determined easily using Equations. (3.22) and imposing the boundary conditionsd, =d, =0.
However, if only the clamped-clamped frequencies are required, it is much simpler to impose the same
boundary conditions on Equations. (3.17). After a minor simplification, this leads to the condition

E 0 0 Ol 1 0 0
0 ER 0 0l0 0 [ 1| 4.1)
0 0 E 0|C S s
0 0 0 ER|S -S C C

It is easy to show that the left-hand determinant cannot be zero for non-trivial solutions. Hence, the
condition that must be satisfied is

3
H(cos r;coshr, —1)=0 4.2)

=
One solution of Eq.(4.2), calculated to arbitrary accuracy, is

237 .
r,=Job, =473004 = o === (j=123) (4.3)

J

In similar fashion, when there is no coupling between the bending and torsional motion i.e.
x, =y. =0, the uncoupled natural frequencies of the member emanating from Equation (3.12) must
also satisfy Equation (4.2) and hence

b*=p=b’, b =p2=b; and b’ =IB; =b; (4.4a-c)

X

b=, b= ad b=, (4.5a-c)

Using Equations.(4.3) and (4.5) gives



0 B3 5 BTy g 23T (4.6a-c)

tB B, B,

Substituting Equations. (4.3) and (4.6) into Equation (3.12) and re-arranging yields the required
relationship between the uncoupled and coupled natural frequencies of the beam as

W, —@; 0 -0
2 .
0 w -,  xo |=0 =123 (4.7)
—y,.0; X (@ =)

Where @, @, and @, are the uncoupled natural frequencies of the two-dimensional symmetric beam
element andw, (j=1,2,3) are the coupled natural frequencies of the three-dimensional asymmetric

beam elemen Equation (4,7) is the required exact relationship between the coupled and uncoupled
natural frequencies of the beam. This relationship can be obtained for the other boundary conditions
easily.
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