Empirical Approach Using ANN for Deter mining
Confined Compressive Strength in FRP-Strengthened
Concrete Members

H. Nader pour
Faculty of Civil Engineering, Semnan University, Iran

15 WCEE

LISBOA 2012

SUMMARY

In the present study, a new empirical approachbtaio the confined compressive strength is develaping
available experimental data by applying artifiai@ural networks (ANNs). With known combinationsimgut
and output data, the neural network can be traimextract the underlying characteristics and iatships from
the data. Then, when a separate set of input sldgalito the trained network, it will produce apapimate but
reasonable output. Neural networks are highly meai and can capture complex interactions among
input/output variables in a system without any pkaowledge about the nature of these interactibtaaing
parameters used as input nodes in ANN modeling asafiameter of column, concrete cover, volumeatmo
of longitudinal, lateral steel bars and also FRB eompressive strength of concrete, the targetuggubd node
was ultimate confined compressive strength. Thesfea functions were assumed to be Log-sigmoid aurd-
linear for hidden layer. The new approach was caetpavith existing empirical and experimental datd also
with formulas available in concrete codes such @$4A0.2R-08. Finally the applicability of the newpgirical
approach to the failure prediction of strengthemegnbers is also investigated.
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1. GENERAL

Bonding FRP sheets externally to strengthen RCtstreis has become a popular technology in the
past decade. With the rapid development of this te®hnology, many issues related to the structural
performances of FRP strengthened RC elements heee imvestigated. External confinement of
concrete using FRPs has become a common methodlwhm retrofitting, especially for circular
columns and many recent studies have been condantélie compressive strength of FRP-confined
concrete and various models have been developeath{ldad Bradford 1995; Karbhari and Gao 1997,
Mirmiran et al. 1998; Miyauchi et al. 1999; Sadfaé 1999; Rochette and Labossiere 2000; Xiao and
Wu 2000; Matthys et al. 2005; Lam et al. 2006; Tehgl. 2007; Lee and Hegemier 2009). Using a
limited test data is one of the weaknesses of iagighodels in which further applicability of their
approaches could not be guaranteed.

In recent years, artificial neural networks haverbef interest to researchers in the modelling of
various civil engineering systems. The FRP-confinedcrete is affected by unknown multivariable

interrelationships and the existing experimentaadae noisy; consequently, the models derived by
regression analysis are not able to predict thawetr well.

Artificial neural networks automatically manage tiedationships between variables and adapt based
on the data used for their training. So it is int@ot to collect a large number of experimental data
this study, a large test database built from arrestve survey of existing tests on FRP-confined
circular concrete specimens is carefully examimeelstablish the effect of various variables. Finall

new model is proposed based on artificial neurakoeks and then verified against experimental data
and existing models.



2. AVAILABLE MODELS

Many researchers investigated specifically the ERMffined concrete and consequently a considerable
number of models developed. All of the proposed elmdiere developed empirically by either doing
regression analysis using existing test data aa bgvelopment based on the theory of plasticiti wit
four or five parameters to be determined usinglalwkd experimental data. The existing models can
be classified into three major categories includingar, second-order and nonlinear models. Table 1
presents some important existing empirical model9redict the compressive strength of FRP-
confined concrete since 1981.

Table 1. Important strength models for FRP-confined corcret

Author(s) Y ear Equation Order
Toutanji and Matthys 2005 foo/ fo =1+ 23(f, / f1)%% Nonlinear
Lam and Teng 2002 foo/fe =1+ 2(1‘I / fc') Linear
Saafi et al. 1999 foo/fo=1+22(f, /£.)% Nonlinear
Miyauchi et al. 1999 foo/ fo =1+ 298(f, /1) Linear
1 ] o 1105 Second
Monti 1999 foo/fo=02+3(f /f) ordel
Karbhari and Ghao 1997 foo/ fo =1+ 21(f, /12)%7 Nonlinear
U r — ' 1105 Second
Mander et al. 1988 foo/fo ==125-2(f,/ f1)+ 2251+ 794f, / f!) rde

3. ANN MODELS

As the first step for providing sufficient inforniat for training, verifying and testing of neural
networks, a comprehensive set of test results enathal compressive strength of FRP-confined
circular concrete specimens was collected. All toge the selected database contains 213 testgesul
including significant test programs of three recdetades (Fardis and Khalili 1984arbhari et al.
1993; Demers and Neale 1994; Howie and Karbharé;18@rmon et al. 1995; Nanni and Bradford
1995; Picher et al. 199&oudki and Green 1996; Karbhari and Gao 199ifauchi et al. 1997;
Watanabe et al. 1997; Harries et198 Mirmiran et al. 1998; Toutanji and Balaguru 1988tthys

et al. 1999; Purba and Mufti 1999; Saafi et al. 49Boutanji 1999; Liu et al200Q Rochette and
Labossiere 2000; Shahawy et al. 2000; Lam et @620iang and Teng 2007; and Teng et al. 2007). It
iIs worth to mention that FRP rupture has been #ieré mode for all the specimens of the test
programs used in this research. The parametersasséte input nodes in the ANN modelling were
the following:

« Diameter of the circular concrete speciménif mm.

« Height of the circular concrete specimé i mm.

e The total thickness of FRP) {n mm.

« The tensile strength of the FRP in the hoop dioectif wp) IN MPa.
« The compressive strength of the unconfined con¢réte in MPa.
* The elastic modulus of FRAE(,,) in MPa.

Having the six input nodes as described abovetatyet node was the compressive strength of the
confined concrete {¢. ). One hidden layer was used in this ANN modellindnere the transfer



functions were tan-sigmoid. Before training theestdd data, normalization/scaling for the wholexdat
were made. This was done since log-sigmoid tranffection was used in the network which
recognizes values between 0 and 1. In order te shaldata from 0.1 to 0.9, minimum and maximum
values were taken to use linear relationship batwbese values. Tables 2 presents the statistical
properties of collected data.

Table 2. Statistical Properties of Experimental Data

Input Nodes d(mm) | Lmm)| f.(MPa)| t(mm)| f (MPa)| E, (MPa)| f. (MPa)

Mean 145.65| 303.17 35.63 1.19 1537.83 114530.40 3170.
Minimum 51.00 102.00 18.00 0.09 167.00 10500.00 8@0.
Maximum | 200.00| 788.00 64.20 5.31 3720.00 629600.00241.00

Whole Standard

Data andard |\ 5907 | 79.64 7.58 111  1231.30  113012)80  24.80
Deviation
Coefficient | 5 0.26 0.21 0.93 0.80 0.99 0.35
of Variation

The criterion for stopping the training of the netiiss was Mean Square Error (MSE) which is the
average squared difference between outputs anetsatgower values mean better performance of the
network (Zero means no error). Regression valueg(&es) measure the correlation between outputs
and targets in the networks; An R-value of 1 meamtose relationship and in contrast, 0 means a
random relationship. These two criteria (MSE andaRtes) were considered as the basis for selecting
the idealised network. The regression values ofnétevorks with different number of hidden nodes
are presented in Fig. 1. Another filtering in the-plimination of networks can be seen in Fig. 2
where the maximum absolute error for each netwak noted. It can be seen that all the networks
were trained well, but some of them resulted las@ees of Mean Square Error (MSE).

B Training ® Validation ©Test ®WholeData

oo N . ' . 1 I s A ! . ! ._
08 - ; : N B w : - : . =
0.7 +
06 -
05 4
04 -
03 4
0.2 4
0.1

Regression Value (R)

0 n T i T

4 ] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Networks with Different Numbers of Hidden Nodes
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Fig. 2. Maximum Squared Error (MSE) versus Number of Hidtlayer Neurons

After the pre-acceptance of desirable networks,bést networks are: NN 6-8-1 and NN 6-11-1. In
order to arrive at a single ideal model, NN 6-1dsds chosen since it presents good results in e ca
of R-values and also has the least value of MSEngratl networks. The results for training the NN 6-
11-1 are summarized in Figs. 3 to 5.

Figure 3 shows the mean squared error of the nktatarting at a large value and decreasing to a
smaller value. In other words, it shows that thevoek is learning. The plot has three lines, beeaus
the 213 input and targets vectors are randomlyddiinto three sets. Training on the training vecto
continues as long the training reduces the netwarkior on the validation vectors. After the netvor
memorizes the training set (at the expense of géreiyg more poorly), training is stopped. This
technique automatically avoids the problem of diting, which plagues many optimization and
learning algorithms.
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4. ANN MODEL VERSUSEXISTING MODELS

The three important models for verification of N model selected including the strength models
proposed by Toutanji and Matthys in 2005 (as tipeegentative for nonlinear models), Lam and Teng
in 2002 (as the representative for linear modeid) fanally Mander et al. in 1988 (second-ordeBeT
simulated compressive strengths of the FRP-confinedcrete from idealised neural network
compared to the three existing strength modelpktted against the experimental values in Fig. 6.
The error distribution of the models, in terms bé tpercentage difference between simulated and
experimental results is summarized in Table 4. Footh Fig. 6 and Table 3, it can be observed that
there is reasonably good performance of the neat&tork in predicting the experimental results. The
average error for the ANN model for predicting #werimental results is equal to 8.9% while the
average error for the other three models includimytanji and Matthys', Lam and Teng's and
Mander's are 13.2%, 16.1% and 20.6% respectivadiually, more than 90% of the simulated results
are within 220 of the experimental values for ANN model but theuaacy of other models is lower
than 80% in the same range.
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Fig. 6. Comparison of various predicted valuesfq'g versus experimental data for different strength eled

Table 3. Distribution of errors for different strength mdsleelative to experimental values

NUMBER OF DATA IN THE RANGE FOR | PERCENTAGE TO WHOLE DATA (213 TESTS)
MODELS FOR MODELS
RANGE LAM [ TOUTANJI TOUTANJI
OF MAND MAND | LAM &
ERROR ER & & ANN- ER TENG & ANN-
(1988) TENG | MATTHYS | MODEL (1988) (2002) MATTHYS | MODEL
(2002) (2005) (2005)
+5% 26 45 55 72 12.2% 21.1% 25.8% 33.8%
1% 51 82 107 132 23.9% 38.5% 50.2% 62.0%
+15% 79 118 149 180 37.1% 55.4% 70.0% 84.5%
20% 112 147 165 196 52.6% 69.0% 77.5% 92.09
£25% 141 168 179 206 66.2% 78.9% 84.0% 96.79
#30% 171 183 193 211 80.3% 85.9% 90.6% 99.1%
#35% 182 192 202 212 85.4% 90.1% 94.8% 99.59
HAW 190 210 209 212 89.2% 98.6% 98.1% 99.59
0% 209 213 211 213 98.1% 100.09 99.1% 100.0%6
+#60% 212 213 213 213 99.5% 100.09 100.0% 100.0%
#65% 213 213 213 213 100.09 100.09 100.09 100.0%



5.NEW ANN FORMULA

As it was indicated in the previous section, theuated results from the neural network are in
reasonably good agreement with the experimental datt it is not convenient to use the network in
engineering design since the network contains maeights and biases together with transfer
functions and consequently the final equations bétome very complicated. In order to come up
with this problem, the neural network should be lygd to generate empirical design charts and
equations for use in design. The range and referealcie for each of the six input parameters ase fi
chosen to be close to their mean values and asemted in Table 4.

Table 4. Range of Input Parameters and Their CorresporRRléfgrence Values Used in Derivation of Empirical
Design Approach

Input parameters Minimum Maximum Reference
d (mm) 51.00 200.00 140
L (mm) 102.00 788.00 300
f. (MPa) 18.00 64.20 35
t (mm) 0.09 5.31 1.2
fip (MPa) 167.00 3720.00 1500
Ep(MPa) 10500.00 629600.00 115000

The pattern formula used here for predicting themessive strength of FRP-confined concrete was
introduced by Leung et al. (2006) for determinidgmate FRP strain of FRP-strengthened concrete

beams. As the first stepf,c'C is first plotted againdErre assuming the other five input parameters are

kept constant at their respective reference vallesiccount for the effect of these parameterié@r,\
a correction function has to be derived. The caiwadunction can be written in the following form:

Fl.L, £t fip) = Cld)* C(L)* C0)* Cl)* Clferp) (1)

The variation of f¢. with each parameter is assumed to be independehe alther parameters. The
correction factorC(d) will be derived first. To deriv@(d), master curves are first obtained with
differentL values, but withd fixed at the reference value of 140. For each coatimn ofd andL,

foc is obtained from the neural network. The numbevasftors to draw the correction factors was

chosen to be about 25% of whole data which is aqimately equal to 50 data series. By dividing the
network simulated value by the value read off fribi master curves, the correction fad@gd) can

be obtained. By considering all curves fofd), a line that fits the curve with the minimum least
square error was found. The same procedure hasamgdied to obtain the correction factors for the
other input parameters.

After finishing the process, the following equasdor correction factors are summarized as:
d
Cld)=-0490—) + 1494
(d)=-0d00_ ) 2)

- L
c(L)= 0159In(_1) + 1009 ®3)



f! f! f! f!
C(f!)= 1082=5)* - 5071—2)3 + 8209—-S)2 - 5025—S) + 1798
(f¢)= 1082_%)" - 5074%)° + 8209_2)* - 5025%) (4)

t ., t
C(t) = - 0064—)2 + 0669—) + 0387
) 4(1.2) 9(1.2) (5)
Cf o) = — 021357294 1 0904 1E2)3  100g1ER2)2 4 0729 E%2) 4 0804 ©)
FRe 150( 150( 150( 150(

Consequently, the compressive strength of FRP-gedftoncrete will be obtained from equation (7):
foe = (Fie) g * C(@)* C(L)* Cl£()* C1)* Clfrp) (7)

With random selection of 113 data from experimedtdahbase, the proposed ANN model is compared
with the three existing models used in Sectionwhich is shown in Fig. 23. Similarly, the error
distribution of the models is calculated and présetnn Table 6. The average error for the ANN
model for predicting the experimental results isia@qo 10% while the average error for the other
three models including Toutanji and Matthys', Land &eng's and Mander's are 10.9%, 16.3% and
16.5% respectively. Actually, more than 90% of @ieulated results are withint20% of the
experimental values for ANN model but the accuratgther models is lower than 80% in the same
range. Again this is an indication that the netwiods learned to generalize the information well and
reflects good precision in simulating. Moreovernoentrating on the Fig. 23, it can be seen that the
values simulated by the ANN model sets spread afdabe 45 line which implies neither over-
estimation nor under-estimation.
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Fig. 7. Comparison of predicted values (ﬁtc versus experimental data for proposed ANN equatgainst
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Table 5. Distribution of errors for different strength mdsleelative to experimental values

NUMBER OF DATA IN THE RANGE FOR | PERCENTAGE TO WHOLE DATA (213 TESTS)
RANGE MODELS FOR MODELS
OF | manp | WAM | TOUTANJI AND | Lamg | TOUTANII
& & ANN- & ANN-
ERROR ( 1';58) TENG | MATTHYS | MODEL | 1';58) (Tz%';(;) MATTHYS | MODEL
(2002) | (2005) (2005)

5% 19 24 34 30 16.8%|  21.2% 30.1% 26.5%
+10% 37 41 65 62 327%|  36.3% 57.5% 54.9%)
H19% 53 60 86 86 46.9%|  531% 76 1% 76.1%
20% 72 78 94 107 63.7%|  69.0% 83.2% 94.7%
25% 89 89 102 111 788%|  78.8% 90.3% 98.2
30% 104 98 111 113 92.0%  86.7% 98.2% 100.0%
35% 107 105 112 113 94.7%  92.9% 99.1% 100.0%
0% 112 113 113 113 99.1%  100.09 100.0% 100.0%
150% 113 113 113 113 100.0%  100.09 100.09 100.0%

6. CONCLUSIONS

Developing neural networks, the compressive strengtFRP-confined concrete was related to six
input parameters including diameter and heightarfceete specimen, total thickness of FRP, tensile
strength of the FRP in the hoop direction, elastmdulus of FRP and compressive strength of the
unconfined concrete. After training the 17 neurgtworks with different number of hidden neurons,
by considering the performance of the networks (M®H R), one of the networks was selected for
simulation which showed effective performance tigloaraining, testing, and validation. In order to
verify the performance of the network, the resfridgn ANN simulations was compared to the results
of three important existing strength models (lineanlinear and second-order models). The average
error for the ANN model for predicting the experimed results was lower than 9% while the average
errors for the other three models were more the&#.13n the other hand, more than 90% of the
simulated results were withit20% of the experimental values for ANN model but thewmacy of
other models was lower than 80% in the same rargehwndicated that the network was learned to
generalize the information well. Also values simethby the ANN model set spread around th 45
line which implied neither over-estimation nor undstimation. In order to use the simulated results
obtained from ANN model in prediction of compressistrength of FRP-confined concrete in the
absence of the idealised network, an equation waseatl which predicts the compressive strength
independently from the network.
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