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SUMMARY 
In the present study, a new empirical approach to obtain the confined compressive strength is developed using 
available experimental data by applying artificial neural networks (ANNs). With known combinations of input 
and output data, the neural network can be trained to extract the underlying characteristics and relationships from 
the data. Then, when a separate set of input data is fed to the trained network, it will produce an approximate but 
reasonable output. Neural networks are highly nonlinear and can capture complex interactions among 
input/output variables in a system without any prior knowledge about the nature of these interactions. Having 
parameters used as input nodes in ANN modeling such as diameter of column, concrete cover, volumetric ratio 
of longitudinal, lateral steel bars and also FRP and compressive strength of concrete, the target or output node 
was ultimate confined compressive strength. The transfer functions were assumed to be Log-sigmoid and pure-
linear for hidden layer. The new approach was compared with existing empirical and experimental data and also 
with formulas available in concrete codes such as ACI440.2R-08. Finally the applicability of the new empirical 
approach to the failure prediction of strengthened members is also investigated. 
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1. GENERAL 
 
Bonding FRP sheets externally to strengthen RC structures has become a popular technology in the 
past decade. With the rapid development of this new technology, many issues related to the structural 
performances of FRP strengthened RC elements have been investigated. External confinement of 
concrete using FRPs has become a common method of column retrofitting, especially for circular 
columns and many recent studies have been conducted on the compressive strength of FRP-confined 
concrete and various models have been developed (Nanni and Bradford 1995; Karbhari and Gao 1997; 
Mirmiran et al. 1998; Miyauchi et al. 1999; Saafi et al. 1999; Rochette and Labossiere 2000; Xiao and 
Wu 2000; Matthys et al. 2005; Lam et al. 2006; Teng et al. 2007; Lee and Hegemier 2009). Using a 
limited test data is one of the weaknesses of existing models in which further applicability of their 
approaches could not be guaranteed. 
 
In recent years, artificial neural networks have been of interest to researchers in the modelling of 
various civil engineering systems. The FRP-confined concrete is affected by unknown multivariable 
interrelationships and the existing experimental data are noisy; consequently, the models derived by 
regression analysis are not able to predict the behaviour well. 
  
Artificial neural networks automatically manage the relationships between variables and adapt based 
on the data used for their training. So it is important to collect a large number of experimental data. In 
this study, a large test database built from an extensive survey of existing tests on FRP-confined 
circular concrete specimens is carefully examined to establish the effect of various variables. Finally, a 
new model is proposed based on artificial neural networks and then verified against experimental data 
and existing models. 



2. AVAILABLE MODELS 
 
Many researchers investigated specifically the FRP-confined concrete and consequently a considerable 
number of models developed. All of the proposed models were developed empirically by either doing 
regression analysis using existing test data or by a development based on the theory of plasticity with 
four or five parameters to be determined using available experimental data. The existing models can 
be classified into three major categories including linear, second-order and nonlinear models. Table 1 
presents some important existing empirical models to predict the compressive strength of FRP-
confined concrete since 1981. 
 
Table 1. Important strength models for FRP-confined concrete 

Author(s) Year Equation Order 

Toutanji and Matthys 2005 ( ) 85.03.21 clccc ffff ′+=′′  Nonlinear 

Lam and Teng 2002 ( )clccc ffff ′+=′′ 21  Linear 

Saafi et al. 1999 ( ) 84.02.21 clccc ffff ′+=′′  Nonlinear 

Miyauchi et al. 1999 ( )clccc ffff ′+=′′ 98.21  Linear 

Monti 1999 ( ) 5.032.0 clccc ffff ′+=′′  
Second 
order 

Karbhari and Ghao 1997 ( ) 87.01.21 clccc ffff ′+=′′  Nonlinear 

Mander et al. 1988 ( ) ( ) 5.094.7125.2225.1 clclccc ffffff ′++′−−=′′  
Second 
order 

 
 
3. ANN MODELS 

 
As the first step for providing sufficient information for training, verifying and testing of neural 
networks, a comprehensive set of test results on the axial compressive strength of FRP-confined 
circular concrete specimens was collected. All together, the selected database contains 213 test results 
including significant test programs of three recent decades (Fardis and Khalili 1981; Karbhari et al. 
1993; Demers and Neale 1994; Howie and Karbhari 1994; Harmon et al. 1995; Nanni and Bradford 
1995; Picher et al. 1996; Soudki and Green 1996; Karbhari and Gao 1997; Miyauchi et al. 1997; 
Watanabe et al. 1997; Harries et al. 1998; Mirmiran et al. 1998; Toutanji and Balaguru 1998; Matthys 
et al. 1999; Purba and Mufti 1999; Saafi et al. 1999; Toutanji 1999; Liu et al. 2000; Rochette and 
Labossiere 2000; Shahawy et al. 2000; Lam et al. 2006; Jiang and Teng 2007; and Teng et al. 2007). It 
is worth to mention that FRP rupture has been the failure mode for all the specimens of the test 
programs used in this research. The parameters used as the input nodes in the ANN modelling were 
the following: 
• Diameter of the circular concrete specimen (d) in mm. 
• Height of the circular concrete specimen (L) in mm. 
• The total thickness of FRP (t) in mm. 
• The tensile strength of the FRP in the hoop direction ( frpf ) in MPa. 

• The compressive strength of the unconfined concrete ( cf ′ ) in MPa. 

• The elastic modulus of FRP (frpE ) in MPa. 

Having the six input nodes as described above, the target node was the compressive strength of the 

confined concrete (ccf ′ ). One hidden layer was used in this ANN modelling, where the transfer 



functions were tan-sigmoid. Before training the selected data, normalization/scaling for the whole data 
were made. This was done since log-sigmoid transfer function was used in the network which 
recognizes values between 0 and 1. In order to scale the data from 0.1 to 0.9, minimum and maximum 
values were taken to use linear relationship between those values. Tables 2 presents the statistical 
properties of collected data. 

Table 2. Statistical Properties of Experimental Data 

Input Nodes d (mm) L (mm) cf ′ (MPa) t (mm) frpf (MPa) frpE (MPa) ccf ′ (MPa) 

Whole 
Data 

Mean 145.65 303.17 35.63 1.19 1537.83 114530.40 70.31 
Minimum 51.00 102.00 18.00 0.09 167.00 10500.00 30.80 
Maximum 200.00 788.00 64.20 5.31 3720.00 629600.00 241.00 
Standard 
Deviation 

29.07 79.64 7.58 1.11 1231.30 113012.80 24.80 

Coefficient 
of Variation 

0.20 0.26 0.21 0.93 0.80 0.99 0.35 

 
The criterion for stopping the training of the networks was Mean Square Error (MSE) which is the 
average squared difference between outputs and targets. Lower values mean better performance of the 
network (Zero means no error). Regression values (R-values) measure the correlation between outputs 
and targets in the networks; An R-value of 1 means a close relationship and in contrast, 0 means a 
random relationship. These two criteria (MSE and R-values) were considered as the basis for selecting 
the idealised network. The regression values of the networks with different number of hidden nodes 
are presented in Fig. 1. Another filtering in the pre-elimination of networks can be seen in Fig. 2 
where the maximum absolute error for each network was noted. It can be seen that all the networks 
were trained well, but some of them resulted large values of Mean Square Error (MSE). 
 

 

Fig. 1. Correlation Coefficient versus NN 6-n-1 

 



 
 

Fig. 2. Maximum Squared Error (MSE) versus Number of Hidden-Layer Neurons 
 

After the pre-acceptance of desirable networks, the best networks are: NN 6-8-1 and NN 6-11-1. In 
order to arrive at a single ideal model, NN 6-11-1 was chosen since it presents good results in the case 
of R-values and also has the least value of MSE among all networks. The results for training the NN 6-
11-1 are summarized in Figs. 3 to 5. 
 
Figure 3 shows the mean squared error of the network starting at a large value and decreasing to a 
smaller value. In other words, it shows that the network is learning. The plot has three lines, because 
the 213 input and targets vectors are randomly divided into three sets. Training on the training vectors 
continues as long the training reduces the network’s error on the validation vectors. After the network 
memorizes the training set (at the expense of generalizing more poorly), training is stopped. This 
technique automatically avoids the problem of over-fitting, which plagues many optimization and 
learning algorithms. 

 

 
 

Fig. 3. Performance of NN 6-11-1 



 
 

Fig. 4. Training state of NN 6-11-1 
 

 
 

Fig. 5. Regressions of training, validation and test data simulated by NN 6-11-1 



4. ANN MODEL VERSUS EXISTING MODELS  
 

The three important models for verification of the ANN model selected including the strength models 
proposed by Toutanji and Matthys in 2005 (as the representative for nonlinear models), Lam and Teng 
in 2002 (as the representative for linear models) and finally Mander et al. in 1988  (second-order). The 
simulated compressive strengths of the FRP-confined concrete from idealised neural network 
compared to the three existing strength models are plotted against the experimental values in Fig. 6. 
The error distribution of the models, in terms of the percentage difference between simulated and 
experimental results is summarized in Table 4. From both Fig. 6 and Table 3, it can be observed that 
there is reasonably good performance of the neural network in predicting the experimental results. The 
average error for the ANN model for predicting the experimental results is equal to 8.9% while the 
average error for the other three models including Toutanji and Matthys', Lam and Teng's and 
Mander's are 13.2%, 16.1% and 20.6% respectively. Actually, more than 90% of the simulated results 

are within %20± of the experimental values for ANN model but the accuracy of other models is lower 
than 80% in the same range.  

    

 
 

Fig. 6. Comparison of various predicted values of ccf ′ versus experimental data for different strength models  

 
Table 3. Distribution of errors for different strength models relative to experimental values 
 

RANGE 
OF 

ERROR 

NUMBER OF DATA IN THE RANGE FOR 
MODELS 

PERCENTAGE TO WHOLE DATA (213 TESTS) 
FOR MODELS 

MAND
ER 

(1988) 

LAM 
& 

TENG 
(2002) 

TOUTANJI 
& 

MATTHYS 
(2005) 

ANN-
MODEL  

MAND
ER 

(1988) 

LAM & 
TENG 
(2002) 

TOUTANJI 
& 

MATTHYS 
(2005) 

ANN-
MODEL  

%5±  26 45 55 72 12.2% 21.1% 25.8% 33.8% 
%10±  51 82 107 132 23.9% 38.5% 50.2% 62.0% 
%15±  79 118 149 180 37.1% 55.4% 70.0% 84.5% 
%20±  112 147 165 196 52.6% 69.0% 77.5% 92.0% 
%25±  141 168 179 206 66.2% 78.9% 84.0% 96.7% 

%30±  171 183 193 211 80.3% 85.9% 90.6% 99.1% 

%35±  182 192 202 212 85.4% 90.1% 94.8% 99.5% 
%40±  190 210 209 212 89.2% 98.6% 98.1% 99.5% 
%50±  209 213 211 213 98.1% 100.0% 99.1% 100.0% 
%60±  212 213 213 213 99.5% 100.0% 100.0% 100.0% 
%65±  213 213 213 213 100.0% 100.0% 100.0% 100.0% 



5. NEW ANN FORMULA 
 
As it was indicated in the previous section, the simulated results from the neural network are in 
reasonably good agreement with the experimental data. But it is not convenient to use the network in 
engineering design since the network contains many weights and biases together with transfer 
functions and consequently the final equations will become very complicated. In order to come up 
with this problem, the neural network should be employed to generate empirical design charts and 
equations for use in design. The range and reference value for each of the six input parameters are first 
chosen to be close to their mean values and are presented in Table 4. 

 
Table 4. Range of Input Parameters and Their Corresponding Reference Values Used in Derivation of Empirical 
Design Approach 

Input parameters Minimum Maximum Reference 

d (mm) 51.00 200.00 140 

L (mm) 102.00 788.00 300 

cf ′ (MPa) 18.00 64.20 35 

t (mm) 0.09 5.31 1.2 

frpf (MPa) 167.00 3720.00 1500 

frpE (MPa) 10500.00 629600.00 115000 

 
 
The pattern formula used here for predicting the compressive strength of FRP-confined concrete was 
introduced by Leung et al. (2006) for determining ultimate FRP strain of FRP-strengthened concrete 

beams. As the first step, ccf ′  is first plotted against EFRP assuming the other five input parameters are 

kept constant at their respective reference values. To account for the effect of these parameters onccf ′ , 
a correction function has to be derived. The correction function can be written in the following form: 

 

( ) ( ) ( ) ( ) ( ) ( )FRPcfrpc fCtCfCLCdCftfLdF ****,,,, ′=′  
(1) 

 

The variation of ccf ′  with each parameter is assumed to be independent of the other parameters. The 

correction factor ( )dC  will be derived first. To derive ( )dC , master curves are first obtained with 
different L values, but with d fixed at the reference value of 140. For each combination of d and L, 

ccf ′  is obtained from the neural network. The number of vectors to draw the correction factors was 
chosen to be about 25% of whole data which is approximately equal to 50 data series. By dividing the 
network simulated value by the value read off from the master curves, the correction factor C(d) can 
be obtained. By considering all curves for C(d), a line that fits the curve with the minimum least 
square error was found. The same procedure has been applied to obtain the correction factors for the 
other input parameters. 
 
After finishing the process, the following equations for correction factors are summarized as: 

( ) 494.1)
140

(490.0 +−= d
dC                                                                                                                  (2) 

( ) 009.1)
300

ln(159.0 += L
LC                                                                                                                (3) 



( ) 798.1)
35

(025.5)
35

(209.8)
35

(071.5)
35

(082.1 234 +
′

−
′

+
′

−
′

=′ cccc
c

ffff
fC                                                 (4)

 

( ) 387.0)
2.1

(669.0)
2.1

(064.0 2 ++−= tt
tC                                                                                            (5)

 

( ) 604.0)
1500

(723.0)
1500

(008.1)
1500

(901.0)
1500

(213.0 234 ++−+−= FRPFRPFRPFRP
FRP

ffff
fC

                          
(6) 

Consequently, the compressive strength of FRP-confined concrete will be obtained from equation (7): 

( ) ( ) ( ) ( ) ( ) ( )FRPcchartcccc fCtCfCLCdCff **′***′=′                                                                   (7) 

With random selection of 113 data from experimental database, the proposed ANN model is compared 
with the three existing models used in Section 4.1 which is shown in Fig. 23. Similarly, the error 
distribution of the models is calculated and presented in Table 6. The average error for the ANN 
model for predicting the experimental results is equal to 10% while the average error for the other 
three models including Toutanji and Matthys', Lam and Teng's and Mander's are 10.9%, 16.3% and 

16.5% respectively. Actually, more than 90% of the simulated results are within %20± of the 
experimental values for ANN model but the accuracy of other models is lower than 80% in the same 
range. Again this is an indication that the network has learned to generalize the information well and 
reflects good precision in simulating. Moreover, concentrating on the Fig. 23, it can be seen that the 
values simulated by the ANN model sets spread around the 45o line which implies neither over-
estimation nor under-estimation.    
 

 
Fig. 7. Comparison of predicted values of ccf ′ versus experimental data for proposed ANN equation against 

three existing models 
 
 
 
 
 
 



Table 5. Distribution of errors for different strength models relative to experimental values 
 

RANGE 

OF 

ERROR 

NUMBER OF DATA IN THE RANGE FOR 
MODELS 

PERCENTAGE TO WHOLE DATA (213 TESTS) 
FOR MODELS 

MAND
ER 

(1988) 

LAM 
& 

TENG 
(2002) 

TOUTANJI 
& 

MATTHYS 
(2005) 

ANN-
MODEL 

MAND
ER 

(1988) 

LAM & 
TENG 
(2002) 

TOUTANJI 
& 

MATTHYS 
(2005) 

ANN-
MODEL 

%5±  19 24 34 30 16.8% 21.2% 30.1% 26.5% 

%10±  37 41 65 62 32.7% 36.3% 57.5% 54.9% 

%15±  53 60 86 86 46.9% 53.1% 76.1% 76.1% 

%20±  72 78 94 107 63.7% 69.0% 83.2% 94.7% 

%25±  89 89 102 111 78.8% 78.8% 90.3% 98.2% 

%30±  104 98 111 113 92.0% 86.7% 98.2% 100.0% 

%35±  107 105 112 113 94.7% 92.9% 99.1% 100.0% 

%40±  112 113 113 113 99.1% 100.0% 100.0% 100.0% 

%50±  113 113 113 113 100.0% 100.0% 100.0% 100.0% 

 
 

6. CONCLUSIONS 
 
Developing neural networks, the compressive strength of FRP-confined concrete was related to six 
input parameters including diameter and height of concrete specimen, total thickness of FRP, tensile 
strength of the FRP in the hoop direction, elastic modulus of FRP and compressive strength of the 
unconfined concrete. After training the 17 neural networks with different number of hidden neurons, 
by considering the performance of the networks (MSE and R), one of the networks was selected for 
simulation which showed effective performance through training, testing, and validation. In order to 
verify the performance of the network, the results from ANN simulations was compared to the results 
of three important existing strength models (linear, nonlinear and second-order models). The average 
error for the ANN model for predicting the experimental results was lower than 9% while the average 
errors for the other three models were more than 13%. On the other hand, more than 90% of the 

simulated results were within %20± of the experimental values for ANN model but the accuracy of 
other models was lower than 80% in the same range which indicated that the network was learned to 
generalize the information well. Also values simulated by the ANN model set spread around the 45o 
line which implied neither over-estimation nor under-estimation. In order to use the simulated results 
obtained from ANN model in prediction of compressive strength of FRP-confined concrete in the 
absence of the idealised network, an equation was derived which predicts the compressive strength 
independently from the network.  
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