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SUMMARY:

Spatial variability of ground motion is generallyodelled by means of power spectral densities aegugncy-
domain coherency functions. This allows generadirigicial time histories or to perform stochasticalysis by
linear filtering. However, structural responsesat@articular measured or synthetic accelerogranmatahe
computed with these methods. The latter goal caadhéeved with conditional simulation techniques.this
paper, we present a methodology capable of takitayaccount spatial incoherence of non stationargnsic
ground motion based on conditional simulation usBaussian process models. The quantities necefwmary
constructing this model are (time-domain) crosgelation functions that are derived from commonbed
evolutionary PSD. This is in contrast to other moelth proposed in literature where conditional sirtioia
techniques are applied in the frequency domain wétbpect to Fourier coefficients. The accuracy raf t
proposed methodology is demonstrated for the stadg of EI Centro earthquake NS record. The prigjseof
the simulated ground motion fields are analysed @dpared to the data and the theoretical grountiomo
model.
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1. INTRODUCTION

Recordings of strong motion arrays on test sitecate that seismic free fields exhibit spatial
variability over even short distances.

This is why, in the recent years, a consideraldearch effort has been employed to introduce $patia
variability of free field motion in seismic resp@nanalysis. A review of the methods proposed in
literature in the last years is given in Zerva @0@Recent applications concern multi-supportedylon
span structures such as bridges or lifelines at agektructures with extended foundations such as
dams or nuclear power plants.

The spatially variable ground motion is generakygdribed, in a statistical sense, by one-point powe
spectral densities (PSD) together with a coherdémogtion. However, in design or verification stuglie

it is often requested to work with natural acceeams that have been selected by seismologists or
other experts. The topic of computing (non linesrjictural responses to a particular recorded groun
motion time history can be tackled by the simulatid spatial ground motion fields conditioned on
the given accelerogram. Several authors have appbeditional simulation techniques to generate
incoherent ground motion. These procedures areragindased on stationary spectral densities and
thus stationary simulation techniques (Kameda et1892,Vanmarcke et al. 1993, Liao & Zerva
2006). In particular, some authors express theéhagiic process modelling ground motion as a Fourier
series. Ground motion fields are then generatecbbgitional simulation of the Fourier coefficienms

the frequency domain. However, the non stationaatune of ground motion may not be well
reproduced by this kind of approach. This is whimeauthors (Vanmarcke et al. 1993, Liao & Zerva
2006), proposed to divide the whole time series misequence of time windows to which different
spectral properties are attributed. In Konakli & Béureghian (2011), wave passage and site effects
are modelled together with incoherence (of ampéjuet, expert judgement or further analyses are
needed in order to choose appropriate time windowistheir respective properties.

This drawback can be overcome by using time-dorssanssian process models. In a first paper by
the author (Zentner, 2007), this method togethéh Weuristic correlation models from information



theory and statistical learning have been used @Jck003, Williams 1998). In this paper, a fully non
stationary cross-correlation model based only ommon ground motion models available in
literature is constructed. Furthermore, a stra@tird method for simulating the conditional ground
motion field is proposed.

2. CONDITIONAL SIMULATION OF SPATIALLY INCOHERENT GROUND MOTION
FIELDS

2.1. Gaussian process model for seismic ground motion prediction

Ground motion is modelled by a Gaussian stoch@sticess. Each earthquake acceleration record,
observed at discrete times is treated as a realizatf a set of Gaussian zero-mean random variables
denoted here, = (ab, ...a)) (i refers to the recorded time instaphtand the subscript to the location
Xo). As it is common use, we will use capital letterglenote random variables and vectors and lower
case letters to denote particular realizations.nThee probability density function of the N-
dimensional random vectar, € RY is the multivariate Gaussian distribution with adgance matrix

K, € RV*N_ The probability density function of random vatehA4, € RY modelling the ground
motion at locationx, is, under condition thad, = a, has been observed, given by the conditional
probability
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LetK be the covariance matrix of the joint distributminA, andA4,:
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where K, € RM*M s the covariance matrix of vectat, andK,, € RV*M is the cross-covariance. It
can be shown that,, conditioned ona, is a Gaussian random vector

(Ailag)~N (K5 Ko ag, Ky — Ko Ko Koy ) - (2.3)
Then we can use the classical formula for simulgéirtGaussian random vector (m, X):

Y=m+LX, (2.4)
T=LLT,

whereL can be obtained by Cholesky decomposition #nid a vector of standardized independent
Gaussian random variables.

2.2. Evaluation of the Covariance matrix from evolutionary Kanai-Tajimi model

In what follows, the practical construction of tbevariances of the spatial ground motion field is
described.

Dealing with Gaussian processes, the ground mdiibah can be described in the frequency domain
by its power spectral density (PSD). It is acknalgled that seismic ground motion is non stationary
both in amplitude and frequency content. This camdécounted for by choosing an evolutionary PSD
model expressed as$(w,t,t") = H(w,t)Sy(w)H*(w,t") and introducing the coherency function

y(w,d) with d = |x — x'| such that:

Si(w, t,t") = Hw, t)Sy(w)H* (w, ty(w,d), (2.5)



A modulating function is generally applied to (2ib)order to account for non stationary amplitudes.
The autocorrelation function can be obtained Foufimnsform of the latter expression (Priestley,
1965):

Ra(t,t") = h(t) [, e H(w, t)So(w)y(w, H* (w,t")dw h(t"), (2.6)

where h(t) is the modulating function. This expressllows to evaluate the covariance matrices of
equations (2.2),(2.3).

The evolutionary Kanai-Tajimi PSD (Lin & Yong 198Fan & Ahmadi 1990) is a very versatile
evolutionary PSD model that accounts for the evatudf the frequency content of earthquakes:

(ug+4f§(ug(t)2(u2
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Skr(w, t) = Sos (2.7)

As can be seen from equation, the Kanai Tajimi (Kibdel is essentially filtered white noise where
the filter frequencyw, depends on time. The latter can be estimated ftwmzero crossings of
accelerograms (Fan & Ahmadi 1990, Rezaeian & Derdghian 2010). Furthermore, the modified
Kanai-Tajimi PSD (Clough& Penzien 1975) is gengrgbireferred since it allows filtering the
unwanted very low frequency content of the KT mo&eich a filter has been added to the model (eq.
2.7) in the applications of §3.

Spatial coherence can be expressed by using calyersodels available in literature, such as, for
example, the semi-empirical Mita & Luco (1987) mbde

v(w,d) = exp [— M] (2.8)
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2.3. Implementation

In summary, we have to perform the following step®rder to construct the spatially variable non
stationary ground motion field:

* Select a pertinent accelerogram.

» Select an evolutionary PSD model and identify @asameters. For the applications presented
in this paper, the modified evolutionary Kanai-fajimodel has been chosen. This model is
defined by a modulating function (in order to mathk time-dependent amplitude) and the
time varying fundamental ground frequency (in ordematch the evolution of the frequency
content). The latter function can be identifiechirthe zero crossing rates.

* Choose the coherency model and evaluate the nbanstey correlation matrix by virtue of
equation (2.6)

e Compute the conditional ground motion field usigg&tions (2.3) and (2.4).

The practical computation of these steps is ilatstt in section 4 where conditional time histodes
simulated for the El Centro 1940 earthquake NSrckco

3. APPLICATION TO EL CENTRO RECORD

We adopt the modified evolutionary modified Kanaifiini model in order to construct the non
stationary correlation function for EI Centro grodumotion. The evolutionary frequency of El Centro
1940 earthquake is taken from the reference of &ahmadi, 1990). Based on the knowledge of the
free field ground motion in one point, we can noengrate input ground motion for the supports of a
long span structure. For our simulations we comsidbighway bridge with 4 supports, denoted LO,
L1, L2 and L3 each separated with distadedOm We suppose that the ground acceleration of the
first support, LO, is specified by the El Centrcelerogram. We use the expression of evolutionary
frequency developed in the reference of Fan & AHNGAE90) for of EI Centro 1940 earthquake. In



the same reference, a modulating function has Iite to match the time dependent standard
deviation evaluated by averaging over windows af Plse estimated standard deviation and the
modulating function are plotted on figure 3.1 tdgetwith the ElI Centro accelerogram. Using this
data, we can generate conditional ground motiddditor the El Centro event. One ex ample of a
generated ground motion field is shown on figu2 FThe conditional time histories as well as figure
3.1 suggest that the amplitude variation of El @ems not accurately accounted for by standard
modulating functions and in particular the one useck. This can be observed especially for the time
interval [5s -10s], featuring very small amplitude&n improvement of the ground motion prediction
can be achieved by directly introducing the estadastandard deviation instead of the fitted
modulating function. Figure 3.3 displays an exangfig@redicted ground motion at stations L1, L2
and L3 for the modified model. One observes thataimplitudes of the simulated ground motion are
in better agreement with the given ground motiormvbsing the improved model (cf. figures 3.2 and
3.3). This model is in what follows called the “inoped model”.

In order to assess the accuracy of our model, wengne the response spectra of the simulated time
histories and compare results to the El Centrooresp spectrum. The pseudo-acceleration response
spectra of the conditionally simulated time higterare shown on figure 3.4. It can be concluded tha
the spectra of the simulated time histories aigoiod agreement with the El Centro response spectrum
(red curve).

Finally, empirical coherencies are estimated andpared to the theoretical model. For this purpose,
smoothed estimates of PSD and cross-PSD are usediany to (Zerva 2009, Tseng et al 1997). The
effects of time-varying amplitude are removed fritva time histories for this purpose. The coherency
functions, estimated from 20 realisations of spajfaund motion fields, are plotted on figure 3.5
together with the reference curves. The curves sth@wcoherency for separation distances d=40m
(stations L1-L2, L2-L3, L3-L4), d=80m (stations LB, L2-L4) and d=120m (stations L1-L4). The
red (dashed, dotted, dash-dotted) curves are faeenee values from the Mita & Luco model while
the solid lines are the estimated curves. The astidhcoherencies are close to the reference. lbean
concluded from these results that the studied festaf EI Centro ground motion can be reproduced
by the model in a satisfactory way.
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Figure 3.1. El Centro 1940 NS accelerogram, estimated starfaridition and modulating function of the
evolutionary KT model according to Fan & Ahmadi 909.
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Figure 3.2. El Centro accelerogram and simulated time hissaatdocations L1, L2 and L3.
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Figure 3.3. El Centro accelerogram and simulated time hissaatdocations L1, L2 and L3 using the estimated
variances instead of the fitted modulating function
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Figure 3.4. Pseudo-acceleration response spectra of El Ceataerogram (red) and of the simulated time
histories (improved model).
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Figure 3.5. Estimated and theoretical coherency functionaiobt after 20 simulations with the improved
model.



5. CONCLUSION

A method for simulating seismic ground motion feldonditioned on a recorded accelerogram has
been proposed. The non stationary correlationtiome are determined from evolutionary PSD
models, currently used for seismic analysis, andgua coherency function. The conditional ground
motion field can be used for “best-estimate” transiseismic analysis required for seismic margin
assessment or more generally in the framework idbpeance-based seismic analysis.

An application to the El Centro earthquake recargriesented in order to illustrate the feasibitity
the approach. The simulated ground motion fieldswsla good agreement with the theoretical
coherency model.
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