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ABSTRACT 
 
Using Structural Analysis Programs and modeling a building the same way as to analyze it, one can generate 
Cullman Ellipses (CE) floor by floor (rigid diaphragms), for horizontal forces.  (CE) are only one of many 
quadratic and quartic forms associated with linear equation systems pertaining to structures. By applying 
torsional moments and rotating loads to each floor in succession, one can generate a chain of affine ellipses 
ending in a Cullman Ellipse. Such Ellipses can indicate, using different graphical ways, the torsional 
amplification factors corresponding to each frame.  Torsional kernels can also be derived from them. After 
processing several building configurations one can conclude that it is not the shape of the floor plans what makes 
a building “irregular”, but the framing configuration what matters. A quartic, a “Booth Curve” (the inverse of an 
ellipse), changes  shape when irregularities appear. It is a quick, visual tool for grading. 
 
Keywords: Cullman Ellipse, Central kernel, Quadratic forms, Torsion in Buildings, Torsional amplification 
factors. 
 
 
1. INTRODUCTION 
Cullman’s Ellipse, (Belluzzi, 1969) the old friend of long gone engineers, is only one of the many 
quadratic forms associated with linear structural analysis. Structural analysis, in itself, is no more than 
a large system of linear equations (Lanczos, 1988). Because of this, there are many other associated 
quadratic forms which apparently never have been of any use in structural engineering. They can all 
be derived from a single quadratic form, the deflections ellipse, resulting from an affine transform 
(Aleksandrov, 1999), a constant rotating force, its locus being a circle of forces, its response an ellipse 
of displacements, or either its geometrical inverse, the Booth’s Ovals or “Beans”, so called because of 
its form. With another series of five successive affine transforms, we can get a series of six Ellipses. 
The ellipses of: 1) deflections; 2) flexibility; 3) rigidity; 4) radius of gyration squared; 5) radius of 
gyration; and 6) Cullman’s Ellipse (The transpose of the Ellipse of radius of gyration). (Paz, Peña, 
2011) 

 
2. EXPERIMENTAL PROCEDURES 
All six ellipses contain and use two invariants of any structural configuration: the two principal and 
mutually perpendicular axes (having constant orientations and variable magnitudes). The axes of these 
ellipses become the only pieces of data necessary to draw the six successive ellipses (all with variable 
magnitudes, some oblate, some other prolate, keeping the principal axes directions constant). It is also 
possible to plot them knowing only two conjugate diameters which appear when instead of a “rotating 
load” we take only two perpendicular axes of loading, with arbitrary orientation, as it is done for most 
projects, when one just follows the codes, which usually require only two arbitrary perpendicular 
directions of loading to perform the structural analyses.   The main author of this paper began working 
with the torsional behavior of buildings some years ago, (Paparoni 1991, Paparoni & Hummelgens 
2000) and found a behavioral analogy between the structural response of framed spatial structures 
under the simultaneous actions of translation and torsion and the well known behavior of beam 



sections under axial loads and flexural moments (Or eccentrically applied normal forces).  There are 
many formulations used in this last case, we chose the well known Rankine formulation s=(P/A)*(1 ± 
ec/r2) . The second term, in brackets, represents a non-dimensional parameter, which can be 
interpreted as an “stress amplification factor”, but we can say that it is also a polarity relation, 
geometrically speaking (Projective geometry). Analytically it is a relation; the product of two numbers 
equals the square of a third number, accompanied by a certain conic, an ellipse for linear and stable 
structures. The Rankine formula locates the rotation axes (neutral axes) in the same plane of the 
section. When e*c=r2 the amplification factor value is two. The Cullman ellipse is a quadratic form 
which, especially in the past, has been associated with a given structure, member or section. It is 
determined by a long series of manual calculations and normally, in structural textbooks of the era, to 
solve planar structures, where the three parameters, r, c and e (a radius of gyration, a distance from the 
center of the ellipse to an edge or corner, or point, and the eccentricity of a force, respectively) are all 
contained in the same plane of the ellipse.. This ellipse establishes, for a certain structural problem, a 
relationship between a force vector, the ellipse itself and their corresponding instantaneous centre of 
rotation, as a sort of kinematic algorithm, (Belluzzi, 1969) This arrangement changes if one wants to 
apply the same relation of parameters to a building floor, considered as a plane diaphragm. The force 
is now coplanar with the diaphragm; the axis of rotation is now perpendicular to the diaphragm; e and 
c are coplanar with the diaphragm.  This demands the transposition (or 90 degrees of rotation) for the 
radius of gyration ellipse to become the classical Cullman Ellipse. (e, must be perpendicular to the 
force). 
 
There is another difference, in a beam section we have flexural moments and axial forces, in a floor 
diaphragm we have shearing forces (coplanar with the diaphragm) and torsional moments.  In the 
Rankine formula the section is described with three geometrical parameters only (A, Ixx, Ixy), in the 
diaphragm we have two mechanical parameters, a Linear Rigidity and a Torsional rigidity, and two 
geometrical parameters, e and c.  The Cullman Ellipse has the same kinematic properties in both cases 
(beam section or diaphragm), specifically, the instantaneous center of rotation in the plane of the 
diaphragm is the equivalent of the rotational axes (neutral axes) in the beam section. The polarity 
relation is different if we take the traces of frames or walls as the equivalents of the beam section 
boundaries. All this can be simplified and expressed with relatively short formulas, but two pieces of 
information are rather difficult to have at hand immediately, the rigidity centers position , and the 
principal axes of the ellipse of displacements. Some structural programs give the center, but not the 
axes, floor by floor.  
 
We need these two pieces of data to start with the process.  We decided to use the perturbation method 
as a starting point, using single arbitrary “round value” loads, one floor at a time, applying each load 
every 10 degrees of azimuth, and getting the respective deflections ∂x and ∂y, which is the customary 
form in most structural programs. Going this way we could get the relations we were looking for 
without having to develop the necessary new algorithms, by using the single mentioned loadings. We 
had a confirmation, ∂x and ∂y plotted together, in cartesian coordinates, floor by floor have, as 
geometrical loci, perfect ellipses.    
 
But when we tried to plot it in Polar Coordinates, taking as angle, each azimuth of every rotating load, 
and as radius the resultant (real) deflection √(∂x2 + ∂y2) we got a curve not usually seen on structural 
analysis books, a Booth’s Oval or “Bean” or “Dog bone”, as a the deflections locus. This curve is very 
interesting.  It envelopes an ellipse, having the same principal axes and four points in common, such 
points determine the magnitudes and directions of the principal axes of deformation, floor by floor. 
These axes determine the ellipse of deflections mentioned before.  It also makes clear that a building, 
under multidirectional loadings (as it happens with seismic or wind forces) does not respond in a 
simple way, with the displacements being collinear with the applied forces; instead, most real 
deflections tend to concentrate towards the most flexible direction of the building, not at all as we tend 
to imagine it according to the customary and old structural convention of using only two directions of 
loading.  Another interesting fact was to find that the Booth’s ovals or “beans” are the geometrical 
inverses of the inscribed ellipses contained in them (relatively rotated 90°). Once we get the necessary 
information about the positions of the rigidity centers and the principal axes magnitudes and azimuths, 



the successive ellipses come naturally in succession, being relatively simple successive affine 
transforms. Later in the effort, we found that one can go straight to simple formulas from the initial 
deflections ellipse to Cullman’s Ellipses (floor by floor). We should add that in order to make these 
calculations, we also need the torsional floor rigidities at the beginning of the process. These are 
obtained by applying constant moments and calculating their respective torsional rotations. This very 
same process can identify the rigidity centers and this particular verification must be performed at the 
beginning of the described process to be able to apply the loads right at the rigidity centers. As one can 
see, the initial processes developed in this research to find the Cullman ellipse corresponding to each 
floor, are rather long and complicated looking. When the calculations were completed, we compared 
our results using the old faithful Cullman ellipse with those calculated using a structural analysis 
program. Using several different structural configurations, we found very small discrepancies when 
comparing the results of the ellipses with the results of the new fashionable structural analysis 
programs. So, old and new tools were successfully combined.  
 
We are now in the process of simplifying the procedures, applying the results to existing buildings 
(rather than model buildings), and trying to adapt the process as an optimization tool or a grading tool.  
Up to now, we are convinced about the validity this methodology.  We can get applicable results, we 
have seen that the normal, symmetric, regular, with perpendicular framing directions respond in rather 
simple ways, and the code prescriptions can be applied as they are.  We have also found that the 
“extreme configurations” where form precedes over function, can have tremendously complex 
behaviors, but also, if apply the methods proposed here one can come to acceptable solutions, using 
the knowledge gained by the old faithful Cullman Ellipse, in another guise.  The big advantage is that 
one does not work with mountains of numbers, but only with geometrical figures.  The Cullman 
Ellipses can be superimposed over the Technical Drawings of each building, at the same scale, or can 
be transformed into “level curves” showing the interaction between Lateral loadings and Axial 
Twisting of Buildings, taking into account also their Torsional Properties. 
 
3. PRACTICAL USE OF THESE TOOLS: 

 
The long sequence of 6 ellipses was followed in order to comply with the initial hypothesis about the 
invariance of principal directions in all of them, and to get clear ideas about the changing shapes and 
orientations of the successive ellipses.  The circular rotating loading generates in succession, first two 
similarly oriented ellipses of deflections and flexibility, then, another two, the ellipse of rigidities (or 
linear stiffness’s), the ellipse of rho2 (radiuses of gyration squared) and followed by the ellipse of rhos, 
both mutually angled with a 90° difference from the preceding ones. Then comes the Cullman ellipse, 
with orientation and shapes akin to the ellipse of rigidities and 90° off of the initial ellipse of 
displacements.   These ellipses, expressed as matrices, must contain a tremendous amount of 
information, in the form of functions or shapes.  Each set of ellipses is equivalent, for the whole 
building, to two geometrically orthogonal matrices with the information pertinent to these directions 
only.  The information about the other intermediate directions is contained in the infinitude of points 
of the geometrical loci of each ellipse.  If we want to use easier formulas, for the Cullman ellipse only, 
we propose the following expression, which gives the magnitudes of the principal axes (the directions 
can be inferred from the ellipse of deflections, which is always needed as a reference. 
 
See chapter six 

 
4. GRADING STRUCTURES: 
 
How do we use the Cullman ellipse to grade Structural Configurations:  The ellipse can be used in two 
guises, as a single ellipse, superimposed on the building drawings, at their same scales.  Then it can be 
interpreted as “level curves”  (a set of ellipses, centrally  homothetic with  the initial ellipse  indicating 
several values of the “amplification factor”) beginning with 1 (one) right at the rigidity center, 2 at the 
boundary of the original Cullman ellipse, then less than 2 inside the original ellipse, more than 2, when 
it is outside the ellipse contour.   Then we can say the following:  All frames (their traces in the 



diaphragm), inside each one of the ellipses will have amplification factors less than the indicated in 
each “level curve” when an horizontal force, coplanar with the diaphragm is secant to that curve. 
 
 
5. ILLUSTRATIONS   
 
 

 

Figure 1. Asymmetrical frame 

The following frame is asymmetrical; the dimensions of its beams are 0.30 x 0.50 m, while its 
columns are 0.3x0.3 m. The building has 9 floors and each floor height is 3.00 m 

 

 

Figure 2. Comparison between the Cullman Ellipses in the first and last floor. 

The outer ellipse corresponds to the last floor, while the inner ellipse corresponds to the first floor. 
This graphic illustrates that there is a change in the Cullman ellipse’s dimensions and axis if the 
building height is increased, whether the frame is symmetrical or not. 

 

 

 

 
 

 



 
 
 

Figure 3. Twelve story high framed tower and Cullman Ellipse for each floor. 

In this example, there is a twelve story high frame, each floor has a 3 mt high separation. As for the 
Cullman ellipse, there is a difference between each floor ellipse.  
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Figure 4. Force position (F) inducing an amplification factor of 2 on the frame (P).  

Polarity relationship between the pole P (frame) and the polar (F), AP indicates the antipole position 
(instantaneous rotation center). 

 
 
 
 
 
 
 
 
 



 
 

Figure 5: Central torsional kernels referred to the Torsional Amplification Factor (TAF) =2, 
TAF = 1.5 y TAF =1.25) 

 
 
 
 

 
 
 
Figure 6. Central torsional kernel for the original configuration (inner kernel) and the optimized 

one (outer kernel). 
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Figure 7. Orientation of a deflections ellipse with principal axes directions coincident with the 
reference system selected.  

 
 
 

 
 
 
 

Figure 8. Booth curve, bean-shaped, for the deflections ellipse of the figure 6. 
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Figure 9. Central torsional kernel for the Cullman ellipse of figure 7 



 

Figure 10: Regularly framed structures 

 
Figure 11: Irregularly framed structures 

 
6. QUICK FORMULATIONS TO DETERMINE THE CULLMAN ELLIPSE 
 

The following expressions resume the results which can be obtained once the Torsional and the two 
Principal longitudinal rigidities (directions and magnitudes) are known, ρ represents the radiuses of the 
Cullman Ellipse, α is the twisting angle induced by the Torsional Moment M. Once ρi )   and  ρj) are 
found, the Cullman ellipse can be drawn using these principal axes and their corresponding 
magnitudes and directions [Notice that the Cullman Ellipse has the same orientation and relative 
magnitudes as the Rigidity Ellipse] [Notice also that by crossing indexes i and j in these formulas, the 
Cullman Ellipse is already rotated the necessary 90º. (Transposed) 
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In words:   

Radius of Gyration ρ (i) = √ Torsional Rigidity (z) / √Longitudinal Rigidity (j) 

Radius of Gyration ρ (j) = √ Torsional Rigidity (z) / √Longitudinal Rigidity (i) 

Being i and j the principal directions of the deflections ellipse; δ their magnitudes and M and F, 
Respectively, the applied Moment and the applied force (Perturbations induced on the system). So, the 
successive ellipses have only a mathematical interest.  

6.1 Ellipses and booth curves expressed in polar coordinates: 

      Ellipses:   

ρ =
ab

a2 cos2 θ + b2 sin2 θ( )  

Where θ is the azimuthal angle of the applied Force. 

           Booth Curve:  
ρ = a2 cos2 θ + b2 sin2 θ( ) 

Where θ is the same as above 

These two curves appear orientated perpendicularly to each other.  They share 4 points in common.  

 

  

Figure 12. Relationship between a Booth curve and its inscribed Ellipse, and its 4 common 
points, at the extremities of each semi axis. 

 

This figure shows correlated points on booth curves, the radii are common, the angles, the same on 
both. Only at the principal axes copuntuality between the two curves exist. All others have “phase 
shifts”. The radii shown are perpendicular to ellipse tangents.   

 

  

Operational Sequence to obtain the Culmann Ellipse (Ž= displacement; θ = load azimuth) 
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or ρ;θ( )polar

All operations are performed on a;b (principal axes), then transpose axes (a,b becomes b,a) :  (5)
Dimensional Checks :  1:  [L]; 2 :[L/F]; 3 :[F/L]; 4 :[L^2]; 5 :[L]; 6 :[L] 
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