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SUMMARY

A method to estimate the dynamic reliability of hysteretic structures under
combined time varying loads is investigated. The response statistical moments of
structures, with hysteretic characteristics approximated by Wen's mathematical
model, are obtained by using the Fokker-Planck equation method with a cumulant
truncation technique. The uncertainties of power spectral densities pertinent to
loads as stochastic processes, are also considered through the derivation of first
passage probability. This paper describes the analysis of a single-degree-of-
freedom system, and demonstrates that resulting variances and covariances of the
response agree well with Monte Carlo simulation.

INTRODUCTION

In those structures which are subject to random dynamic loads such as earth-
quake, gust of wind, wave, etc., there are the possibilities of the structures
receiving loads with very severe, great input level in future. The structures
frequently show elasto-plastic behavior represented by hysteretic characteristics
in the occurrence of such loads. In the evaluation of reliability, all loads
which are likely to occur in future should be considered for the load level which
is essentially uncertainty, and the loads should naturally include loads with the
level at which the structures show nonelastic response. Therefore, probabilistic
treatment based on the nonlinear random vibration theory is finally required in
the dynamic reliability analysis.

Further, only any one of the above various dynamic loads does not always
occur during the service life of the structure, but also several loads generally
occur, and yet some loads may be applied at the same time. Though the effect of
load combination is reflected in the guidelines for structural design in various
countries including Japan, most of them are determined empirically and subjective-
ly, and it seems that these have not completely studied theoretically and ration-
ally.

Under these circumstances, this paper describes a method to estimate the

dynamic reliability (first passage failure) of hysteretic structures taking into
consideration the coincidence effect of dynamic loads.
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FIRST PASSAGE PROBABILITY CONSIDERING LOAD COMBINATION

For the load combination problem of a structure, since the occurrence time ¢,
duration time 4 and amplitude level ) are naturally random variables in the
dynamic load process, it is not easy to presume the occurrence possibility,
maximum value, etc. of loads to be combined. For this problem a method considered
to be effective for dynamic reliability analysis is Wen's method (1), the outline
of which is given below.

Formulation of first passage failure of the system for random process is
generally used in the following form:

PAT) =v*T H)

where pP;(T): Failure probability of the system during service life
y* : Mean rate of upcrossing
T : Service life

Since Wen's method to determine V* is simple in expression and can be easily
utilized in the dynamic reliability theory, this paper adopts this method.

According to Wen, y* is expressed in the following way (2).

Moo MM
v =SB+ 5 S P @
= T
where,
P, : Mean occurrence rate when only load F exists and occurs.
ﬁ%: Mean occurrence rate when only loads F; and F; exist and occur.
Conditional mean rate of upcrossing which the response value exceeds
the limit state level when only load F exists and occurs.
Y;: Conditional mean rate of upcrossing which the response value exceeds
the limit state level when only loads F, and F exist and occur.
M : Total number of types of load

A

In equation (2), coincidence probability of three or more types loads is
omitted since it is considered to be very small. For F; and P;, the following
expression is approximately possible when stochastic Poisson process has been as-—
sumed.

P=x 3
By = A (Hgi+ L) 4)

where A,(k=i,j): Mean occurrence rate of load F;
Hy, : Mean duration time of load F;

Therefore failure probability Pr(T) will be obtained by calculating J; and

i -

A SINGLE-DEGREE-OF-FREEDOM NONLINEAR HYSTERETIC MODEL

This paper takes up a single-degree-of-freedom hysteretic model as shown in
Fig.l, and analyzes a load combination problem when two types of dynamic loads - a
load due to base excitation and general external force—operate. In Fig.l, x and
Xg indicate the absolute displacement and ground displacement, and m and C
indicate mass and damping coefficient respectively. Also, F(¢) and Q indicate the
external force and nonlinear restoring force respectively.
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A general equation of motion for Fig.l is

mi,+ Chpt Q(Xp t) = —mEg+F(t) (5)

X
Restering force Q
F(the> m
J
Relative
c displacement X,
b (=x=xg)
"Z.xg

Fig. 1 Single-Degree-of-Freedom Hysteretic Model

Though various models have been proposed so far for the hysteretic model required

for equation (5), effective models for theoretical analysis of dynamic reliability
are less than expected. Out of these, Wen's model (3) has comparatively wide ap-

plication, and can be easily utilized even in the theoretical analysis since it is
given in mathematical expression. For this reason, this paper makes use of Wen's

model shown in the following equation.

QXp t) = Qkxy+ (1—Q) RZ )

Z = Axr=Bli | Z1* Z= 7%, | Z|" (7)

MEAN RATE OF UPCROSSING WHEN TWO LOADS SIMULTANEOUSLY APPLIED

Estimation of the Response Covariance Using the Fokker—Planck Method  Though
there are the stochastic equivalent linearization technique, perturbation method,
Fokker-Planck method, etc. as typical methods for nonlinear random vibration, the
Fokker-Planck method is used here in accordance with the reference (4).

Assuming X, =X, %y =X, and Z = X, indicating equations (5) to (7) using
state variables,

X=X
C Qk 1-a)k F(#)

X = —7X2~7X1——TX3~JC§+7 (8)

X3 = AXy— B Xe || Xa "7 X =Y Xa| X"

Hence, if Xz and F(¢) in equation (8) are considered to be random process,
equation (8) becomes a probability differential equation with (X, X;, X;)as state
random variables.

X¢ and F(¢) in equation (8) are regarded as nonstationary random processes
which are independent to each other, and are assumed as follows.

j:'g=eg(t)ng(t) 9
F(#) _ 10
=g (tn(t) (10)

where &g (t) and € (t) are assumed to be shape functions which slowly change with
time, and #7¢(¢) and 7/(¢) Gaussian white noises having the following characteristics.
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Elm()] =0
Eln (1) m(t+7T)) = 271 Sp; 8(T) an

(I=87F)

where £ ]J: Ensemble average
So; : Power spectral intensity of 7(¢)
6(T): Delta function

In equation (8), the dynamic load is composed of two: Xg and F(¢), and each
of them consists of white noises which are independent to each other. Therefore,
state random variablesX = (X, X,, X;)Tare considered to be Markov vector component
at this time, and its transient probability demsity ¢4,(X7, ¢| X/, t,) satisfies the
Fokker-Planck equation.

When the initial condition is assumed to be known as probability 1, the
equation which probability density function Prx)(X7, ¢) should meet is determined as
follows.
9P _ aP aP (2>P+{<ak

Tt = T %x TA%Tx, 7>Xl+<TCyL‘)X2+

r(1-Q) P
m X3} X,

3*P

X2 12)

816152 {161 P} +7Xeg e {161 P+ {Sos (04 583 (0} 2

Though various values are considered as the value for # in equation (12),#=1
seems to well represent a general elasto-plastic behavior according to Wen (5),
and also it can be easily interpreted theoretically. Therefore, this paper limits
to a case of #=1to carry forward the formulation. Moreover, for the term for ab—
solute value appeared in equation (12), quadratic curve approximation is performed
as follows.

Xl =aX?, | X|=a Xt (13)

in which @4, and @, are determined to minimize the statistical mean square error
coming through approximation. Substituting equation (13) into. equation (12), the
equation without absolute values which probability density function Py (X7, #)
should satisfy is obtained. After repeating integration by parts against its
equation, second order moment equations are determined as follows.

%EEX?J =2E(X: X2) (14)

LE(X}) = — 4600 LX) —2Q0h ELX X,) -2 (1~ @) &

X ELX X0 +27 { So€ (1) + Sor 3 (1)} (15)
] 88 \_1_ .

2B = 24B0 30 - () 5 B X0 ~(57= ) 5 B LG X6) (16)
-gt—E[Xngj E(XH -QWiE(XH — — 26 E( X1 X2) — (1—Q) WEE[ X3 Xs) (17

2 EUGX) = AELXF) - (1-0) 6 ELX]) - QiE (X Xi)

~ 260 E (6. X0~ (2= ) 5 B X3 = (5= ) 5~ E L 3] (18)
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o (48 \ L
S ELG X = AE(X )+ E(X% X)) ( 31@?) Oy,

2oy (47 \_ 1 2
X B X0~ (575=) 5 B % X3 19

in which replacement is performed as (&/m) = wiand(C/m) = 2w, .

Though equations (14) to (19) are not closed formed equations, closed forms
can be easily obtained by using the cumulant truncation technique in the same
manner as reference (4). In those derived closed equations, the parameters of
Sog > Sof » @g(t) and ¢;(t) are random actually. However, this paper takes up only
Soe and Sys as random variables, and limits &g (t) and €;(¢) to definite constants
for the simplicity. 1In order to facilitate the later reliability calculation,
response moments may be obtained as a function of (Sgg"'Sof) from considering
equation (15). The response moments take the following form at this time.

E(X?] = H (Sog+ Sor) (20)
E(X7) = Hy (Sog+Soy) (21)
H, and H» in the above equations are functions obtained by the least square method.

Calculation of the Conditional Mean Rate of Upcrossing First determine joint
probability density function P (X, X,)for X, (=X))and x,(=X,). Since covariance for

Xy and %, is 0, P(Xx,, %,) becomes as below when the response can be approximately
assumed to be small and Gaussian process.

P(Xy, Zy) = mexp{—%<%+0x—é)} (22)

By using equation (22), conditional mean rate of upcrossing Vs that Xr
exceeds a certain level (x,=4) at a positive gradient is determined as follows:
1 (0 ;

Vi = [;mer (d, %) diy = E(gm)exp(—%;:) (23)

If it is considered that the above almost applies in the case of a negative
gradient, conditional mean rate of upcrossing lj that x, exceeds a region of
|x,] < 4 becomes

- 1(0%, d
Ver = Vi + Vg = 2V = —7?(6';>exp(~203§,> (24)
Considering equations (20) and (21), ly is expressed in the following form:
=L _H_2> (__di.>
vy = 7y () e (-3 (25)

If Spg and Spf are definite values in equation (25), Y will be completely determin-
ed. Since, however, Spg and Syf are random variables, the following form consider-
ing it will be the final expression for lg.

Ver = %—A‘I“/(—%> exp(-%) Joog (S08) o,y (Sor) dSog dSos (26)

in which f, and %, are probability density functions for Spg and Sof respectively.
Since equation (26) is numerically integrated, f, and f,, may have any form.
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NUMERICAL CALCULATION

Various constants in hysteretic models adopted for numerical calculation are
A=1.0, @=0.05 , #=0.75 , #=1 and Y=0.47. Further as constants showing vibration-
al characteristics of the structure, wo=10.0(rad/s) and ¢=0.01 are used.

The determined response moments are shown as a function of (Sbg+5hf)in Fig.2,
and the calculation results of the failure probability with parameter of service
life are shown in Fig.3.
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CONCLUSION

(1) When a single-degree-of-freedom hysteretic structure is excited due to
some random dynamic loads without reproducibility, the analysis method to estimate
the first passage failure of the structure has been developed in consideration of
the coincidence effect of the dynamic loads.

(2) For the response moments obtained by applying the cumulant truncation
technique to the Fokker-Planck method, the Monte Carlo simulation is also perform—
ed. The comparison of both results shows good agreement and describes that the
analytical theory is valid.
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