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SUMMARY

An analytical method of stochastic damage analysis and reliability analysis
of hysteretic multi-degree-of-freedom structures subjected to nonstationary
seismic excitations is described. The aims of this paper are in systematically
unifying the conventional stochastic response analysis including the damage
analysis and the reliability analysis, and in directly evaluating the reliabi-
lity function of the whole structural system under consideration of statistical
dependence among the safety margins of the structural components.

INTRODUCTION

In this study, the stochastic damage and the reliability analyses of multi-
degree-of-freedom hysteretic structural systems subjected to severe seilsmic
excitations are dealt with. The measures of structural damages are, in general,
defined as continuous and nondecreasing functions of time. For the failure
criterion that the ith structural component fails when the structural damage Nj
of the ith structural component exceeds the corresponding structural capacity
cpi, the reliability function of the ith structural component is given by

Cp.

Ry(t) = Provl ny(t) < omy 1 = | T p(ng)any (1)
If system failure occurs when at least one of the structural components fails,
the reliability function of the whole structural system is expressed as

R(t;Sy)

1

Probl nq(t) < cp, N ng(t) <epy N oeee N nylt) <epy |

[

Jjéé'f p(n1,n2,-~-,nN)dn1dn2~°'an (2)
where N is the number of structural components, Sy is the safe domain of the
whole structural system, and M is the intersection operator of events. In order
to evaluate the system reliability from Eq. (2), the joint probability density
function p(ﬂ1,ﬂ2,",ﬂN) of the damages of structural components is required.

The objects of this study are to obtain the joint probability demsity fumnc-
tion of damages in the analytical form, and to evaluate explicitly the system
reliability by taking account of the statistical dependence of the structural
damages. The analytical method is based on the theory of continuous Markov
processes. By using the differential forms of the measures of structural dam-
ages as well as the constitutive laws of hysteretic structures, it is possible

VI-773



to formulate the ﬁresent problem in the form of stochastic differen?ial equa-—
tions. The method proposed for the reliability analysis of hysteretic systems
(Refs. 3,4) is applied to multi-degree-of-freedom hysteretic systems.

FORMULATION IN THE FORM OF STOCHASTIC DIFFERENTIAL EQUATIONS

Consider multi-degree-of-freedom hysteretic structural systems. The non-
dimensional hysteretic characteristic ¢3; of the ith story is expressed as

65 = rixy + (1-ri)zg (3)

where the nondimensional relative displacement of the ith story, xj, is normal-
ized with reference to yield deformation, zi is the nondimensional hysteretic
component, and r; is ratio. Both ¢ji and z; are normalized so that each initial
rigidity is unity. The differential forms of hysteretic characteristics includ-
ing the degrading or stiffening characteristics have been presented for a class
of piecewise-linear hystereses (Ref. 1) and for the curved hystereses (Ref. 2).
For the bilinear hysteretic model, the differential form is given by

2y = Xi[1 - U(Xi)U(Zi_di) - U(—xi)U(_Zi_di)] = 8z4 (4)
where U(*) denotes the unit step function. TFor the curved hysteretic model (Wen
model) the differential form is given by
)+ Byl lzs|nil = gy (5)

7: = %i[1 - {Visgn(iiz

i i

It is necessary to define an appropriate measure of structural damage as
the output response of each part of structural systems. The elementary measures
of structural damages have been described by the differential forms in terms of
single-valued nonlinear functions of the relevant state variables (Ref. 1). The
cumulative plastic deformation ratio is expressed as in the differential form

Npj = (1-r5)sgn(z;) (X5-g435) = enps (6)
where gy = éi- The dissipated hysteretic energy ratio is in the form of
nhl = (1~ri)zi(xi—gZi) = g‘nhi (7)

The low-cycle fatigue damage factors associated with total and plastic deforma-
tions are, respectively, given by

o -a; a:=-1¢ -

Npgs = aicFilixil i [xi| = Bnpyy (8)

. a; -a- a.-1;j° -

Nepy = a; (1-r1) lcPil'Xi—ZiI i ]xi—gzi] = Bnppg (9)
where aj, CF; and CP;j are parameters. Here the fatigue damage factors are so
normalized as to take the value 1 when failure occurs. The composite measures
of structural damages can be defined by making use of the elementary measures.

By using the differential forms of the hysteretic constitutive laws and the

measures of damages, the state space equation of the whole dynamic system con-
sisting of the hysteretic structure and the measures of damages may be given by

Z="F(t,2) +N, F(t,2) =42 +G(Z), 2Z,5=0 (10)
where x 0 0
- |7 -0 _ ] V(e)w(t)
Z = 7 ’ G gz ’ N= 0
n &n 0

y = i, A is a coefficient matrix of the linear part of the structural system, V
is a matrix-valued function of t, and W is a Gaussian white noise vector. Egq.
(11) 1is equivalent to a special class of the It0 stochastic differential equa-
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tion in the form
dz = F(t,2)dt + V(t)dB(t), Zy_g =0 (11)

where B is a vector-valued Brownian motion with zero-mean and diffusion intensi-
ty matrix Q. By defining the moments M(kq,kp,°**,k,) of the state vector Z

n .
Mlky ko, t k) = BO(2)], 9(2) = T 7K1 (12)

the moment equations are derived from Itd's formula as

R n-1 n
Mkpakgooeky) = 1 1 Ty ghley Mleqsoepky=T,02 dg=1,00 k)
i=1 j=i#1
n n n
1 -1 kj
t 5 L Tagks (eg=1) MOep,eeykg=2,00 k) + ] k5BIFs25 T 259 (13)
2 i=1 i=1 i=1

where n is the number of state variables, F; and Z; are the ith components of F
and Z, respectively, and Pij is the ij element of T = VQVT.

FINITE SERIES EXPANSION OF PROBABILITY DENSITY FUNCTION

In order to concretely determine the expectation operator E appearing in
Eq. (13) and to truncate the moment equations to a finite set of simultaneous
first order differential equations, it is necessary to introduce an analytical
form of the joint probability density function p(Z). Here, the joint probabil-
ity density function is approximated by a finite series expansion in terms of
different orthogonal polynomials depending on the properties of state variables,
especially on the regions of the state variables. For the case that the struc-
tural system has the bilinear hysteretic characteristics, the approximate prob-
ability density function is expressed as

" L M
p(Z) = T Lg: wy(x;) wy(ys) wylzs) wang) 8 7 L)
=g 1 NS ONRLT ANPGRSy g fnimg=0 T 40
. g 3RO L9
c T Hy (%) Ho (5.) o (5.) LEBi1)
Lyetymq e cmyngemyagetay o Ry 0g) Fag(rs) Png(ag) Pt (vyng) o (14)

where N is the number of degree-of-freedom of structural system, wy and wy are,
respectively, the univariate normal and gamma density functions. HRji, Hmj and
Hnj are Hermite polynomials, Légi‘1) is the generalized Laguerre polynomial, ii,
91 and %i are standardized random variables, B3 = Ez[ni]/cﬁi, Vi = E[ni]/oﬁi.
The folding operator in is defined as

=83 -
(+) = [U(zg#85) - Ulag-6;) + 6(zy+6y)[  Tamy + 6(zg=5)

L _dzi] (') (15)

81

Zi
The coefficients Cg,eefymqeemynqi*nyqqeeqy 2re determined as the functions of
the moments from the following relations:

L-le+mj

N _
Zn§=0 CQqeefymqe e Mytly e e NyQ g« o Qy iET J(ki:ni;5iy0zi)
N ~ A Alcs P
BL Ty, () B (5) CRRRCa CRO)

= N : (16)
i£1 21! my! (Bi)qi/qil
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where  (B)q = T'(B+q) /T(B)

J(k,n;8,0) = [1+(-1)k+n]{fg Ean(E)wN(Z)dZ + (é)k

= [: H, (z)wy(z)dz}

For the Wen hysteretic model, p(Z) is assumed as

L M

N
p(2) = E

4 WN(Xi) wN(yi) WB(Zi) wG(ﬂi)

)
1 . . .= =
ZQ,J+mJ+nJ 0 qu 0

N N ~A o (as s (B =1
. . 1y,71(,. i ‘N
Ceyeomy**ny**qq*qy 121 Hgi(xl)Hmi(yl)Pni ’ zzl)Lqi ZVlﬂl) (17)
where a; = (1/0Z; - 3)/2, wg is the probability density function of Beta distri-
bution, and Pniy is the Jacobl polynomial. The coefficients are given by

N N ~ o (ag,04) (B1-1)
Bl 0y, Gg)By, G)B (ag)0g, ™ (ogny)]
cog esp, seg. segy = 18
Chyeemysony=ray ay N (18)
i£1 24! mi! Bny(ng) (Bi)qi/qi!
where 2 (q) = [(2042) T2 (n+a+1)
n'% = n!.(2n+20+1) T2(a+1) T'(n+20+1)

The nonlinear terms in Eq. (13) can be evaluated by using the approximate
probability density function, and the resultant moment equations yield a finite
set of first order nonlinear ordinary differential equations which are numeri-
cally solved under nonstationary state. The time~dependent joint probability
density function and statistics of the whole state variables are obtained.

RELIABILITY ANALYSIS

The probability density function of the measures of structural damages 1is
obtained as the marginal probability density function from Eg. (15) or (17) as
follows:

M
1 r(B3-1)

N
p(m) = T wylng) 1 D .. _
=1 GM'i q1+..+qN=O q1Q2 qN j:1 qJ

vjnj) (19)

where Dq1q2..qN = COO"‘Oq1q2“qN

The reliability function of the ith structural component and the system relia-
bility function of the whole structural system defined by Egs. (1) and (2),
respectively, are directly obtained by integrating the probability density func-
tion p(n) over the safe domains as follows:

M 1. a g ve
ReCtsor) = 1 o8 7y (e GG i Bind) 6(Bs+mvie ) (20)

!
=0 ¥ p=0s=0 PIAS) T(Bs+s)
Mo N T(Bi+qs) 1 I R A 83
R(t38) = [ I —25 e TOEInpngteeng'] T (<)
qq*e*+qy=0 i=1 1 s4=0 sy=0 3=1
81
> 9 Ay N 3
s Y
[qq] ey LD I k [qk] Tg (ByHy sV Cp. ) (21)
sy TBy*s3) g 20 ay=0 k=1 " 8
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where Ig(B,c) = Y(B,c)/T(B), I'(*) is the gamma function, Y(*,*) is the incom-
plete gamma function, and (o) is the binomial coefficient.

NUMERICAL ANALYSIS

As a numerical example, a three-degree-of-freedom shear structure subjected
to stationary white noise with the spectral level sy is investigated. Here the
hysteretic model is the Wen type where B;j= y; = 0.5, Aij = 2. The distribution
of the nondimensional mass, initial stiffness and rigidity ratio are given as
{m} = {1, 1, 1}, {k} = {1, 0.8, 0.5} and {r} = {0.1, 0.1, 0.1}. The cumulative
plastic deformation ratio is adopted as the measure of structural damage. In
the series expansion of Eq. (17), L = 4 and M = 1 are used, and the number of
the moments to be solved is 2169. To verify the accuracy and validity of the
present method, a digital simulation of sample size 1000 has been carried out.

The time-dependent standard deviations of displacement and velocity res-
ponses are shown in Figs. 1(a) and 1(b), respectively. The abscissas are nor-
malized with reference to the natural period. Figs. 2(a) and 2(b) show, respec-
tively, the mean values and the standard deviations of the cumulative plastic
deformation ratios. Fig. 3 shows the reliability functions of the structural
components and the system reliability for the case that cp; = cp =15, 1 = 1, 2,
3. In these figure, the simulation results are also plotted. It is indicated
that the analytical results are in good agreement with the simulation estimates.

The assumption of the statistical independence among the structural compo-
nents is often used to obtain approximately the lower bound of the system reli-
ability. On the other hand, unity correlations give the upper bound of the
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(a) Displacement responses. (b) Velocity responses.
Fig. 1 Standard deviations of responses of 3DOF hysteretic system under
stationary white noise. : Theory. e, x, A ¢ Simulation.
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(a) Mean values. (b) Standard deviations.

Fig. 2 Statistics of cumulative plastic deformations of 3DOF system under
stationary white noise. : Theory. e, x, A : Simulation.
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system reliability. From the defini-
tion of Eg. (2), the analytical exp-
ressions of two reliability functions
are given as follows:

N
R(t) = I R,(t £ =0

L l( ) or pninj (22)
min R;(t) for fn =1 (23)

R(t) = mi
1sisN inj

Fig. 4 shows the system reliability
functions for various values of the
structural capacity. In this figure,
the approximate reliability functions
obtained from Egs. (22) and (23) are
compared with the reliability func-
tion obtained by the present method.

CONCLUDING REMARKS

An analytical method has been
presented for seismic damage and re-
liability analysis of multi-degree-
of-freedom hysteretic structures
based on the stochastic differential
equations. The proposed method has

some significant features. First of’

all, by introducing the finite series
expansion of the joint probability
function of the whole state variables
in terms of different orthogonal
polynomials depending on the proper-
ties of state variables, the conven-
tional stochastic response and relia-
bility analyses are systematically
unified into the analysis only in-
cluding one time parameter. The
second feature is that the system
reliability can be obtained by simple

28y = 0.2
0.5 F iy

{r}
[ {cpl = (15,15,15)

= {1.0,0.8,0.5}
= {0.1,0.1,0.1}

I |

Fig. 3

5 10 ¢/t

Reliability functions of structur-
al components and system reliabil-
ity function of 3DOF system under
stationary white noise.

—— : Theory. e,x,A,s: Simulation.

0.5

~

Fig. 4

_L -
10 t/%
System reliability functions of

3DOF system.
: Eq. (21), present method.

3
- - - : Eq. (22), M Ri(%).
i=1

— — ¢ Eq. (23), 12;23 Ry (t).

integrating procedure under consideration of the statistical dependence among
the structural components. The proposed method has the advantage of versatile
applicability. However, since the number of differential equations to be solved
considerably increases as the number of state variables as well as the order of
the analysis increases, some effective and simplified schemes are required in
order to apply the proposed method to large scale structural systems.
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