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SUMMARY

Methods and formulas related to the first passge probability and its corresponding
reliability are reviewed in this paper. It is found that some formulas can be obtained
from others by careful derivations. It is also found from the numerical examples that the
independent peaks assumption results in very good approximation for the first passage
probability for wide-band processes. As for the narrow-band processes, it is found that the
Poisson envelope crossings assumption results in the best approximation for double-sided
crossing problems. Some newly developed techniques more relevant to seismic problems
are also briefly reviewed in this paper. A numerical example is provided to show the
applicability of these techniques.

INTRODUCTION

The first passage problem is highly related to the reliability of the structure when
the earthquake excitation and structural response are modeled as random processes. It is
also known as the first excursion problem or first crossing problem. The direct topic of
the first passage problem is the first passage time which is defined as the time that the
random structural response or its envelope, passes a given single- or two-sided threshold
for the first time. It can represent the probability of catastrophic failure of a structure
if a proper threshold is specified, although this usually requires a full-fledged nonlinear
response consideration. Due to the random nature of the excitation and response, the first
passage time is also a random variable distributed with respect to time. The mean value
and mean square value of the first passage time can usually give us valuable information
about when such a catastrophic failure may occur.

The term “first passage failure,” however, does not necessarily indicate that a struc-
ture fails immediately following the first time the response passes a given threshold level.
Instead, the first passage probability is frequently used to measure the probability that
the structural response exceeds certain design limit conditions such as onset of yielding at
least once within a specific time interval. In these cases, the first passage failure generally
involves only linear response consideration, and the first passage problem is meaningful as
a measure of likehood for the structure to be in a design limit state, an important indicator
for structural safety.

EXPECTED CROSSING RATE

The expected crossing rate is a very important parameter in some approximations
related to the first passage problem. According to Rice (Ref. 1), the expected crossing rate
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for a random process X (t) to cross a level b with positive slope (up-crossing rate) is
n@) = [ 416,30 o
0

where f(z,Z,t) is the joint probability density function of X and X. In studying a linear
time-invariant system’s response to a Gaussian zero-mean nonstationary random excitation
having an evolutionary power spectral density function, Yang (Ref. 2) derived the following
expected up-crossing rate for the nonstationary response process X (t):
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where o, and o, are the standard deviations of X(t) and X(t), respectively; &() is the
standard Gaussian distribution function; p,0,0: = py0, (t)o:(t) = E[X(#)X(t)]; Kiy =
0%/B; K3 = —p,0.0; /B K;, = 02/B; and B = B(t) = 0202(1 — p?). The same result
but in a different expression has also been derived by Howell and Lin (Ref. 3).

Extending Cramer and Leadbetter’s stationary envelope definition (Ref. 4) Yang also
derived the following expected up-crossing rate for the envelope of a nonstationary response
process X(t) (Ref. 2):
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S(w) is the double-sided power spectral density function of a stationary random process and
Plt, wf is a deterministic function. If the random process considered is real, then (¢, w)
will also be a real function and the expressions in Egs. (3) and (4) can be simplified. In
particular, if ¢ is a function of time only, the excitation becomes a uniformly modulated
random process and expressions in Egs. (3) and (4) will be even more simplified. For this
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special case, according to Langley (Ref. 5), Egs. (2) and (3) can be written in the following
expressions:
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where p,0,0; = P20s (tyoy (t) = E[X( ) (t)]; 4(-) is the standard Gaussian probability
density function; X (¢) is the Hilbert tranformation of X(¢); and ¢ and r are defined as
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It can be shown that Eq. (5) is exactly the same as Eq. (2).
In studying the transient as well as stationary structural response to a step-function-
of-time modulated random excitation, Krenk et al. {Ref. 6) also derived an expression for

the expected up-crossing rate which can be shown to reduce to Egs. (2) ans (3).

For the special case that X(t) is a stationary random process Egs. (2) and (5) and
Eqgs. (3) and (6) reduce respectively to
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where p; = /A2 /(Ao)z), and X, is defined similarly to A; and XA, but with a different
subscript (see Eq. (4)).

POISSON AND OTHER ASSUMPTIONS

Although Poisson approximation is an easy way to calculthe the first passage proba-
bility, it is asymptotically exact only when the process is Gaussian stationary and threshold
level increases to infinity (Ref. 4). For a threshold level of practical interest, the result from
Poisson assumption is either too conservative or nonconservative depending on different
situations. In order to improve this, Vanmarcke derived another approximate formula for
the first passage probability (Ref. 7). The derivation is based on the clump size consider-
ation and several other assumptions such as the exponential distribution of the envelope
excursion length, the independence of the clumps and the independence of the recurrence
times. The final result is

l—exp( £ 2)
exp(;;’;)-—l

where v, is the zero crossing rate which can be calculated from Eq. (1) or (8); 6§ =

3 A2 /X0A;)*/? is a band-width measure which has a value between zero and one and is
eﬁneé based on the following spectral moments of the single-sided power spectral density
function:

©)

P(i,b) =1 —exp{ —upt

A = /w w" [28(w)]dw, n=0,1,2 (10)

It is noted that Eq. (10) is the stationary case of that defined in Eq. (4). Vanmarcke derived
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Eq. (9) for a stationary narrow-band Gaussian process, but claimed that it is also applica-
ble to wide-band processes and nonstationary processes by considering the parameters S,
A, 8, 0, and v, time dependent instead of being constant (Ref. 7). It has been criticized
that the theoretical argument for doing so has never been justified (Ref. 2). Particularly,
it was pointed out that the transient nonstationary structural response is not a uniformly
modulated random process. Although many nice properties of the stationary random pro-
cess or envelope process can be extended to the uniformly modulated random process, it
has never been proved that this is true for other nonstationary processes such as the tran-
sient structural response considered by Corotis et al. (Ref. 8). It is also doubtful that the
clump phenomenon which is particularly prominent for stationary narrow-band processes
is still a reasonable assumption for highly wide-band and/or nonstationary processes.

In spite of the questions mentioned above, because of its simplicity Vanmarcke’s
formula has been widely used by many researchers (Ref. 8). Many empirical or semi-
empirical formulas have also been derived or proposed based on Vanmarcke’s original
formula. In his paper, Yang (Ref. 2) has also shown that Vanmarcke’s formula can be
written as follows after both crossing rates of the process and its envelope are obtained,

vi(r)
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It is noted that Eq. (11) includes both stationary and nonstationary cases.

RECENT DEVELOPMENTS

Most of the recent developements on the first passage problem focus on the ap-
plication of those basic techniques discussed previously to vector processes or to load
combination problems. In both cases, the expected crossing rate has been studied by sev-
eral researchers (Refs. 9,10,11). After this crossing rate is obtained, the reliability of the
structure can be estimated.

In the load combination problem, it is usually assumed that the component processes
are statistically independent and the combination of these processes follows a linear rule.
In real situations, both independence and linear combination may not be true. If the
statistical dependence and nonlinear combination of these loads are to be considered, one
may have to study the same problem from a vector process point of view (Refs. 12,13).
The reliability of the structure is then considered to be probability that the vector process
stays within the linear or nonlinear limit state surface describing the failure criterion in a
given time interval. Similarly to other dynamic reliability analyses, the expected crossing
ra.te1 (qr more specifically, the expected out-crossing rate) plays an important role in the
analysis.

In order to define the expected out-crossing rate, consider a random vector-process
(or multi-variate process) X(t) and two complementary domains D and D* such that

Xt ={X() X@) ... X.@)} (12)
D={X: g¢g(X)>0} (13)
D =(X: g(X)<0) (19

where T represents the transpose of a vector. Eq. (13) (or (14)) indicates that D (or D*) is
a domain in the m-dimensional space in which the components of X satisfy the condition
g(X) > 0 (or g(X) < 0). Let Fp denote the limit state surface (interface between the
domains D and D*). Then, the expected out-crossing rate vp can be obtained by (Ref. 14)

vo = [ ds, f iy (6,9) 44 (15)
Fp o
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where dS,, is the surface element on the interface Fp and fyy (x, ) is the joint probability

density function of X(t) and Y (¢). The out-crossing rate vy, given above is equal to the
expected rate at which X(t) will cross the interface Fp from the domain D into the domain

D* at time t. The parameter Y () in Eq. (15) represents the normal component of the
velocity of vector process X(t) crossing the limit space. It can be calculated from

Y(t)=nTX() and Y(t) =nTX(t) (16)

where n is the unit outward vector defined on, and normal to, the interface Fp. The unit
vector n is outward if its sense is directed from D to D*. For a one-dimensional case,
Eq. (16) reduces to Eq. (1).

Depending on the limit state surface, t.e. g(X), expressions for the expected out-
crossing rate can be derived from Eq. (15). For example, Shinozuka et al. (Ref. 12) have
derived analytical expressions and upper bound of vy, for those limit states defined by
hyper-planes and by hyper-spheres, respectively. It was shown that their expression of
the expected out-crossing rate for a hyper-sphere limit state reduces to a formula derived

earlier by Veneziano et al. (Ref. 13) provided that the components of X(t) and X(t)
are uncorrelated. It was also pointed out that a hyper-polyhedral limit state surface can
always be used with relative ease to approximate a limit state surface of any shape either
by inscribing or describing the surface.

NUMERICAL EXAMPLES AND CONCLUSION

Numerical examples are studied in order to examine the accuracy of many formulas
proposed to find the expected crossing rate and the first passage probability. It is found
that for a stationary wide-band Gaussian process, the assumption that peaks occur inde-
pendently or crossings occur following a Poisson process gives us reasonably accurate result
for the first passge probability. As for the narrow-band Gaussian process, the present study
shows that one of the best approximations for the two-sided crossing probability is to use
the envelope crossing rate and assume crossings occur according to a Poisson process. Two
of the results are shown in Fig. 1 in which the dashed curves from Eq. (11) and simulation
results based on a sample of five hundred each are also plotted for comparison. More detail
results can be found in Shinozuka and Wu (Ref. 15).

More recent example in which the first passage analysis was performed in relation to
seismic structural safety assessment include the papers by Shinozuka et al. (Ref. 12) and
Tzavelis and Shinozuka (Ref. 16).
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Fig. 1 Reliability of a stationary narrow-band random process
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