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SUMMARY

The dynamic response of inelastic structural systems have characteristics considerably
more complicated than those of corresponding linear elastic systems. In this paper, methods
of nonlinear random vibrations are used with analysis techniques of linear primary-sec-
ondary systems to determine the dynamic characteristics of multiply-supported secondary
systems with inelastic components. The problem formulation and analysis method provides
valuable insight which is useful for both design and research applications.

INTRODUCTION

Primary-secondary systems, consisting of a relatively heavy primary subsystem sup-
porting a secondary subsystem, have complicated dynamic characteristics not found in ordi-
nary structures (Ref. 1). A common design criterion is to maintain linear elasticity in all
components of the secondary subsystem. Recent studies have shown that secondary subsys-
tems allowed to respond in the inelastic range have significant capacity, indicating that the
linear design strategy is excessively over-conservative (Ref. 2). However, inelastic dynamic
systems are considerably more complicated than the corresponding linear system, and
appropriate analysis techniques are necessary to gain insight into their characteristics.

In this paper, attention is on secondary systems with added inelastic structural mem-
bers. The basic design strategy is to introduce energy dissipation in the added members while
maintaining a safe, linear elastic response in the main and critical portion of the secondary
subsystem. The analysis is based on methods of nonlinear random vibrations which have
proven to be accurate and mathematically based (Ref. 3). The essential new idea in this paper
is to separate the inelastic analysis of the support members with the linear analysis of the
remainder of the secondary subsystem. Some approximation is necessary; however, the
analysis is simplified and can be interpreted in terms of linear secondary subsystem with
varying member properties. This interpretation is useful since the properties of linear sec-
ondary systems have been mathematically characterized (Ref. 1). Efficiency is introduced by
using analysis techniques of modified dynamic systems which have been developed in the
aerospace industry (Ref. 4).

ANALYSIS OF NONLINEAR PRIMARY-SECONDARY SYSTEMS

Powerful methods of random vibrations are available to analyze nonlinear structural
systems. One class of methods uses the equivalent linearization technique to obtain accurate
estimates of the mean-square stochastic response (Ref. 3). This technique has been success-
fully applied to systems with hysteretic nonlinearities and extended to include stiffness and
strength degradation (Ref. 5).

The original nonlinear equations of motion are of the form
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z=g(z) +f 6]

where g, f, and z are N-vectors representing the nonlinear system, its response, and the forc-
ing function, respectively. The equivalent linear system is

X=Ax+f @

where A is an NxN matrix of constant, real coefficients and x is an N-vector approximation for
the response. The matrix A, chosen so that the difference between x and z are minimized in a
statistical sense (Refs. 3 and 5), is a function of a set of linearization constants cy, ..., C;.

These constants are dependent on the covariance of the response vector, R = E[x xT]
¢j =¢j(R) j=1,..m (3

The relationship between ¢; and R makes the equivalent linear system response-dependent,
which is a key point examined in this paper.

Nonlinear primary-secondary systems can be analyzed using the general formulation of
Egs. 1-3; however, greater insight can be obtained by examining the special characteristics of
such systems (Ref. 6). The approach is to perform a modal analysis of the equivalent linear
system (Ref. 7) and to make use of the theory of linear primary-secondary systems (Ref. 1).
The eigenvalue problem is given by

AD; =i ®; i=1,.,N (4)

where A; and @; are the i-th eigenvalue and mode shape, respectively. For non-interacting
primary-secondary systems, the system matrix A is of the form

._AP
A_[B As]

where A, and A are the subsystem matrices for the primary and secondary subsystems,
respectively, and B is the matrix describing the subsystems' interface. The particular form of
A can be exploited by matrix algebra to obtain closed-form solutions for the eigenvalue problem
in terms of subsystem modal properties (Ref. 6). Once the modal properties are determined,
the response covariance is obtained by modal combination

(6))

‘R =R(A,{®;,Ai,i=1,..,.N}) (6)

Full details of the eigenvalue and modal combination analysis can be found in Ref. 6. In the
next section, this analysis formulation is simplified by separating the nonlinear and linear
aspects of the problem.

SEPARATION OF LINEAR AND NONLINEAR ANALYSIS

A study of a fundamental two-degree-of-freedom primary-secondary system (Ref. 8) has
shown that a separation of linear and nonlinear analysis can be used to provide valuable
insight into the response characteristics. The response is determined by using a previously
established linear analysis of the system (Ref. 1) modified by the notion of response-dependent
subsystem natural frequencies and damping ratios. The basis of the approach is a narrow-
band condition for the response (Ref. 9) which is satisfied for tuned systems at moderate
response levels (less than 50% of yielding).

In this section, these results are generalized to multiply-supported secondary systems.

Consider a secondary subsystem comprised of a main structural component and supporting
elements. The proposed design approach is to allow inelastic deformation in the supports
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while maintaining linear elasticity in the more critical main structural component during
large (but rare) dynamic excitations. The energy dissipative mechanism of the supports
would act as passive control devices which would reduce vibrations, and thereby preserve the
integrity of the main component. To satisfy the narrow-band condition for the response, it is
assumed that the response is dominated by a set of tuned modes at a primary natural fre-
quency @, and that the response levels are moderate.

The nonlinear support members are characterized by equivalent linear stiffnesses, &;,
and viscous damping constants, c;,

ki =ki(Ri, 0p) )

ci = ¢Ci(Ri, wp) ®)

fori =1, ..., M, where R; is the mean-square response at support i and M is the number of
supports. These equivalent properties are evaluated by the method of slowly-varying parame-
ters (Ref. 6, 10) where @, is the mean value of the response frequency. The equivalent linear
properties define the nonlinear characteristics of each support, are related to the primary
subsystem only through the tuning frequency @,, and is independent of the main component
of the secondary subsystem. Thus, in this step, the nonlinear analysis of the supports has
become separated from the analysis of the remainder of the primary-secondary system.

The linear part of the analysis is based on Eq. 2, where the system mairix A is given by
Eq. 5 and the subsystem matrices are of the form

I I
Ap = 1 1 Ag=| .
M;'K, M,'C, ST oMk, M, ©

where M, C,, and K, are the mass, damping, and stiffness matrices of the primary subsys-
tem, and My, Cs(cy,...,cpr ), and K(ky, ...,k ) are the corresponding matrices of the sec-
ondary subsystem with dependence on the support properties as noted. The response covari-
ance, R, given by Eq. 6, is dependent on the support properties

R=R({kj,Cj,j=1,...,M}) 10)

Since the support properties are dependent on R (Egs. 7,8) the response is determined by
simultaneously solving the nonlinear equations given by Egs. 7, 8, and 10. The computational
solution requires repeated evaluation of the eigenvalue problem in Eq. 4. Two complementary
analysis techniques can be used to insure efficiency in the solution process: the closed-form
primary-secondary modal properties described in the previous section (Ref. 6) and re-analysis
algorithms for modified dynamic systems that have been developed in the aerospace industry
(Ref. 4).

EXAMPLE ANALYSIS

Consider the primary-secondary system in Fig. 1 in which the primary subsystem is a
continuous cantilever shear beam and the secondary subsystem is a moment beam modeled
with five lumped masses (magnitude m = 1 unit) with relatively stiff translational and rota-
tional spring supports at the upper and lower ends and a nonlinear support mounted at the
midpoint. The basic properties of the system are given in Fig. 1. The effect of the support
nonlinearities on the mean-square displacement response at the beam mid-span, R,, is
investigated, where the support properties are chosen such that fundamental mode of the sec-
ondary subsystem is nearly tuned to the second mode of the primary subsystem (natural fre-

quency = 12 Hz, or @, = 24w rad/sec). For simplicity, a wide-band excitation, modeled by white
noise with power spectral density Gy, is used for the input. A range of values for G¢ is exam-
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examined to show the changes in the response characteristics as the system becomes
increasingly nonlinear.
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Ei/mL =213sec
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kK'/m = 75x10 sec

Fig. 1. Example Primary-Secondary System

The characteristics of the nonlinear support is investigated first. The relationship
between the relative support velocity response, x, and the hysteretic displacement, z, 1s mod-
eled by the nonlinear differential equation (Ref. 5)

2=%-|x|z-xz an

in which yielding occurs at unit displacement. The inelastic force is (1 - @) koz+ akox where kg
is the pre-yield stiffness, and (1 -0) kg is the post-yield stiffness. For this example study, o =
0.05 and three levels of ky representing three different designs for the support are considered:

ko/m = 10,000; 7,000; and 5,570 sec-2.

The equivalent linear stiffnesses and viscous damping coefficients in Eqs. 7 and 8 are
determined for varying mean-square response levels and @, = 24n rad/sec using the approxi-
mate analysis in Ref. 6. The results for kg/m = 5,570 are shown in Figs. 2 and 8. As expected,
the stiffness decreases and the damping increases with increasing response levels.
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Fig. 2. Equivalent Support Stiffness Fig. 3. Equivalent Support Damping
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The linear analysis of the primary-secondary system with varying support properties is
performed independent of the nonlinear analysis. The basic formulation is in Egs. 4-6, and
efficiency is introduced by using the methods described after Eq. 10. The results are shown in
Fig. 4, where the response normalized by the input power spectral density is plotted for vari-
ous linear stiffness and damping values for the support. The peaks in the curves which occur

when ko/m is near 5570 sec2 are due to the tuning between the fundamental frequency of the
secondary subsystem and the second mode of the primary subsystem. At the left of the peaks,
the response becomes independent of the support damping. This can be mathematically
explained in terms of the spatial coupling and tuning parameters (Ref. 1) and is commonly
termed the "pseudo-static response.”

0.0201
%‘ 0.0151
S 0.0107 c= 0
% =5
=10
=20
0.0051
0.000 . r . - - -
0 4000 8000 12000

ki m (sec?)
Fig. 4. Linear Response Curves with Nonlinear Trajectories
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Fig. 5. Input/Response Relationships

The nonlinear and linear analysis is combined by mapping equivalent linear stiffness
and damping pairs, defined by (k;¢)=kRp,wp);cRpm, wp)) for various levels of R, onto the set
of curves in Fig. 4. The results are shown in three bold trajectories, corresponding to the
three pre-yield stiffness values chosen for the support design. The trajectories begin at the
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¢=0 curve and move downward and leftward due to increased equivalent damping and
decreased equivalent stiffness for increasing response level. Eventually the trajectories rise
due to the softening of the support which results in an increased mid-span displacement
response. An interesting aspect of the trajectories is that they appear to reach a lower limit as
the equivalent damping becomes sufficiently high. Essentially, the high damping eliminates
the tuning effect and the response is dominated by pseudo-static displacements. A rigorous
mathematical analysis can be performed using the formulations developed in Ref. 1.

The relationship between the response and the input is obtained by comparing the
response levels R, in Eqs. 7 and 8 with the response ratio R,,/Go determined by the
trajectories in Fig. 4. The result is normalized by the linear response result and is plotted in

Fig. 5 for kg/m = 5570 sec2. In addition, the exact results, obtained by solving the full random
vibration problem defined by Egs. 1-3, is also shown. For a completely linear system, the
response ratio R ,,/Gy is independent of G¢ and would appear as a straight horizontal line in
Fig. 5. The results show that moderate nonlinearities in a support member can significantly
reduce the response of a secondary system. In addition, good agreement is observed between
approximate and the exact random vibration results.

SUMMARY AND CONCLUSIONS

Results from nonlinear random vibrations, linear primary-secondary systems,
nonlinear two-degree-of-freedom systems, modal combination for nonlinear systems, and
dynamic re-analysis techniques have been combined to formulate an approximate, simple
method for examining inelastic secondary systems. The insight into the problem was briefly
illustrated by an example illustration and can be developed further with more detailed
examination of the relationships between the various theories. Further enhancements are
possible in problems in optimal design (structural optimization theory), in the use of other
aspects of random vibrations including nonstationary excitation and strength and stiffness
degradation, and in a greater understanding of the relationships between linear and
nonlinear response characteristics.
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