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SUMMARY

The  statistical properties of the response of a linear secondary system
are investigated. The supporting primary system, a multi-story building, can be
linear or hysteretic. The effects of vertical ground motion and gravitation
are shown to be important for the hysteretic case.

THE LINEAR TIME-INVARTANT COMBINED SYSTEM

When both primary and secondary systems behave linearly, the effect of
vertical ground motion is generally unimportant. In such a case the combined
system may be treated as being time-invariant, and the equations of motion can
be written in the following matrix form:
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where X is a vector of N displacements (relative to the ground) of the primary
system, Y, is a vector of unattached degrees of freedom of the secondary sub-
systems, and G is the input horizontal ground motion. However, a complete
analysis of the combined p-s system is computationally not feasible in many
cases and several approximate procedures of the secondary system have been

proposed (e.g., Refs. 1,2).

For the special case of an N-d.o.f primary system and one-d.o.f secondary
system, accurate response can be obtained from Eq. (1) by considering only the
primary mode which is in tune with the secondary system, and those other
primary modes lower than the tuned mode (Ref. 3). However, this approximate
procedure is not efficient when the secondary system is tuned to a high primary
mode, in which case a modified cascade procedure is more efficient; namely, the
response near the natural frequency of the secondary system is calculated from
Eq. (1) by including only the tuned primary mode and a few lowest primary
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modes, whereas the response for the remaining frequency region is calculated
using the traditional cascade procedure.

The modified cascade approximation is used to calculate the r.m.s shear
force acting on an equipment located on the fourth floor of a 20 story
building. The equipment, with damping ratio of 0.03 and mass ratio Me/M=0.01
where M is the mass of a typical story, is tuned to the ninth primary mode of

r — EXACT SOLN.

--- MODIFIED CASCADE

APPROXIMATION
(PRIMARY MODES 1,2,9)

6

NEWTON x 10

1 1
0 10 20 30

TIME (SECOND)

FIG. 1. COMPARISON OF EXACT AND APPROXIMATE SOLUTION
FOR R.M.S. FORCE ACTING ON SECONDARY SYSTEM

the building which has story masses of 3.456 x 106 kg and interstory stiffness
and damping coefficients of 3.404 x 10° N/m and 1.0 x 109 N/m/s, respectively.
An evolutionary Kanai-Tajimi model for the ground acceleration (Ref. 4) was
used in the calculations with ground resonant frequency of m rad./sec. and a
damping ratio of 0.5. It has been shown that an evolutionary Kanai-Tajimi model
can be simulated by a sequence of independently arrival pulses (Ref. 4). In the
calculation, the pulse arrival rate is assumed to vary as u(t)=t2(l-t/tl)2,
with ©;=20. This model is capable of incorporating the variations of both
intensity and frequency contents with time. The computed approximate result is
shown in Fig. 1 along with the exact result for comparison. It can be seen that
the accuracy of the approximate result is quite good.

HYSTERETIC PRIMARY SYSTEM

Under intense seismic excitation, a building can be forced into the
inelastic regime. In this section we assume a shear-column construction for the
building model and local hysteresis effects confined to the columns of the
first floor. A hysteresis model proposed by Bouc (Ref. 5), and later
generalized by Wen (Ref. 6), is used to model the restoring force in the first
floor columns. Neglecting differential compressions between the columns in each
floor, the modified equation of motion for the first story unit can be written
as follows:
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where
H=-a, [X/[H - aq X, [H| + a, X (3)

where subscript e indicates the equipment and subscript s denotes the floor on
which the equipment is located, and a) through a, are parameters. Parameters aj
through a, can be varied to obtain different hysteresis behavior. The other
equations in Eq. (1) are unchanged. The vertical component of ground motion V
and gravitational acceleration g can be included by substituting K: (1-
Pj/Pcr,‘) for Ky, where P, ; is the pre-yielding buckling load (Ref. 9) of
column j, and Pj is given by

N .. -
Pj =3 Mi(g +V )+ M, (g+V)UC(s-j); j=1,..N (4)
i=j
In Eq. (4), s denotes the supporting floor of the equipment, and
U (s-j) =1 if s-3 20
=0 if s-j <0 (5

The N+l second order equations (building + equipment) can be converted to
2(N+1) first order equations which, together with Eq. (3), forms a system of
2N+3 equations. These equations can be written in matrix form as follows:

2y'= 171 {23 +1 16 123 - 0 (6)

in which each prime denotes one differentiation with respect to a non-
dimensional time T, and @ and T are nondimensionalized horizontal and vertical
ground excitations, respectively. We shall model these excitations as amplitude
modulated Gaussian white noise processes, i.e.,

& (1)

el(t) Sl(t) (7a)

ez(r) Sz(t) (7b)

r «(z)

in which ej(t) and ep(t) = deterministic envelope functions and S;(t) and Sy(t)
= stationary Gaussian processes with the following correlation functions:

E[ Sl(I) Sl(t+s) ] = 27 Dllé(s) (8a)
E[ 5,(t) S,(t+s) | = 2m D,,6(s) (8b)
E[ Sl(r) SZ(T+S) ] =27 Dlzé(s) =27 DZlé(s) (8c)

Eq. (6) can be converted to the Ito type stochastic differential equations
(Ref. 8), which can in turn be used to construct moment equations of any order
for the response. It can be shown (Ref. 9) that the equations for the first

moments are:

Vil-743



f E[z 1, k=l,...2(N+1)
& Ez,)=Em]={ ¥ 7 } )
E[f(2N+3)r Zr], k=2N+3

and the equations for the second moments are
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d

-— E[Zk Zj] = fjr E[Zk Zr] + fkr E[Zj Zr],
if N+1< k <2(N+1) or N+1< j <2(N+1) or both (10b)

4 = 10
E[2, zj] E[ fjr z, 21 +E[f zj z1, (10c)

if k= 2N+3 or j = 2N+3 or both

where fy.. and 8kp in the above expressions are elements of matrices [F] and [G]
in Eq. %6) Although Eqs. (9) and (10) are written for the first and second
order moments, higher order moments also appear in the expressions. This occurs
when a f;; term appears inside the square brackets for ensemble average as seen
in Eq. %iOc). Similarly, equations derived for the third order moments will
involve still higher order moments. Therefore, the entire set of moment
equations forms an infinite hierarchy which is a common property of nonlinear
random vibration problems. To solve for lower order moments a suitable closure
scheme must be used to truncate the infinite hierarchy of equations. In this
study we choose the simplest truncation scheme, namely Gaussian closure,
although more complicated closure schemes are possible.

Since Gaussian white noise is of a zero mean, it may be concluded on
physical grounds that the first moments of the response variables are zero
unless the initial state is nonzero or if the parametric and external random
excitations are correlated, or both. Assuming a zero mean response and applying
the Gaussian closure technique to truncate the third and higher order moment
terms result in the following approximation to Eq. (10c):

d
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E[Z, Z ]
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Numerical computations were carried out for the simplest case of a 1-
story building-equipment combined system with a mass ratio M./M of 0.001 and
assuming a damping ratio of 0.05 for both the structure and tﬁe equipment. The
modulation functions were chosen to be e1=ep=2.6 (exp(-.25t)-exp(-.75t)). For
the spectral levels, we used Dyy=.1, and DZZ/D11=0.64. For parameters of the
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FIG. 2. NORMALIZED MEAN—SQUARE DISPLACEMENT RESPONSE

OF EQUIPMENT TO MODEL SEISMIC EXCITATION

hysteresis model, we selected the values a;=0.8, ajg=a3=.5, and a,=l. These
correspond to a softening nearly elastoplastic system with smooth transition
(Ref. 6).

In Fig. 2 we show the normalized mean-square displacement response of the
equipment when the equipment is tuned to the pre-yielding frequency of the
structure. The labels H, V, and G, and their combinations, are used to denote
which factors (horizontal, vertical ground motion, or gravity) are included in
the computations. It is clear that the vertical ground motion increases the
equipment response. The gravity effect is relatively unimportant in this
example, but it can be more important in other cases (for different parameters
ap through a;. See Ref. 9.).

CONCLUDING REMARKS

We applied the modified cascade procedure in the first numerical example
of linear p-s system under horizontal seismic excitation. Parametric studies
have also been carried out for other cases with very accurate results (Ref. 3).
The computed results shown in Fig. 2 for a softening hysteretic system
indicated that the vertical ground motion had a greater effect on the secondary
system response. Other computations for a hardening hysteretic system indicated
that the effect of the gravitational force could be even greater (Ref. 9).
These suggest that both the vertical ground motion and the gravitational force
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should be taken into account if the primary system is deformed into the
hysteretic regime.
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