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SUMMARY

An overview of the engineering approach in modeling strong ground motion is
presented. A brief historical review of the stochastic modeling of earthquake
strong motion is attempted, followed by a classification of the existing models.

The subject of spatial variability of ground motion is also addressed. An effort to
point out the merits as well as weaknesses of the engineering approach is made vis a
vis seismological methods of synthesis.

INTRODUCTION

Recordings of earthquake strong motions were obtained for the first time during
the Long Beach, California earthquake of March 10, 1933, and since then the database
of strong motion records has expanded considerably. A common feature of all the re-
cordings was their erratic appearance. The first engineering interpretation of
strong-motion accelerograms was made by Housner (Refs. 1 and 2) who explained their
appearance by reasoning that high-frequency seismic waves are generated by irregular
slippage along faults and subsequently are subjected to numerous random reflections,
refractions and attenuations as they propagate through the heterogeneous crustal
structure of the earth. Since then, many researchers followed Housner's paradigm in
interpreting and modeling strong-motion accelerograms as random processes for aseis-
mic design.

The stochastic nature of high-frequency ground motions is recognized by both
engineers and seismologists. However, the approaches they use in modeling ground
motions differ fundamentally. The engineer relies on an expedient approach in which
earthquake motions are simulated so as to agree in essential (for engineering de-
sign) ways (such as amplitude, frequency content and duration) with existing data.
The intent of this approach is to capture the essential characteristics of high-fre-
quency motion at an average site from an average earthquake of specified size.
Phrasing this differently, the accelerograms artificially generated by engineers do
not duplicate any specific earthquake but embody certain average properties of past
earthquakes of a given magnitude. On the other hand, the approach adopted by seis-
mologists involves the prediction of motions from a fault that was identified by
geologists and which has specific dimensions and orientation in a specific geologic
setting. This latter approach is useful for site-specific simulations.

Stochastic modeling of earthquake motions and the ability to efficiently gen-

erate "realistic" artificial accelerograms are necessary for the study of the in-
elastic seismic response of structures which is of considerable importance for de-
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sign. Inelastic response is accompanied by degradation of the structure's stiffness
or strength or both. The location of yielding and extent of structural degradation
which may result, may vary considerably from excitation to excitation corresponding
to the same earthquake magnitude. Given the difficulty of obtaining analytical
solutions for the seismic response of inelastic and degrading structural systems,
the most tractable - although computationally expensive - approach to the problem is
Monte Carlo simulation using a deterministic structural model (e.g., Refs. 3 and 4).
But even for classes of inelastic systems for which approximate analytical ap-
proaches can be devised, Monte Carlo simulations using artificial accelerograms as
input are necessary in order to assess the validity of the approximations.

As will be mentioned in the present paper, various stochastic models, station-
ary and nonstationary in intensity and/or frequency content, have been proposed for
the simulation of high-frequency earthquake strong motion. The choice of statisti-
cal model depends on aspects of the structural response which are important for the
problem at hand. A brief historical overview of the stochastic modeling of earth-
quake strong motion is attempted followed by classification of existing models.

In addition to the temporal variation of ground motion of a single point of the
ground surface, dynamic analyses of extended structures such as pipelines, tunnels,
bridges and dams, require description of the spatial variability of the ground mo-
tion as well. Therefore, we will also address the issue of the spatial variability
of earthquake ground motion, and we will discuss some attempts which were recently
made by engineers to model its stochastic component.

STATISTICAL MODELS OF STRONG-GROUND MOTION

Historical Overview It is instructive to attempt a brief overview of the histori-
cal development of the statistical modeling of strong ground motion. We will pri-
marily concentrate on early original contributions, and no exhaustive literature
survey will be attempted.

As stated in the introduction, Housner (Ref. 1) made the first engineering
interpretation of strong-motion accelerograms. He proposed that the extreme ir-
regularity of recorded ground acceleration could be explained by a large number of
waves which are generated by a swarm of shear dislocations on the fault plane.
Housner (Ref. 2) then proceeded to show that an accelerogram formed by adding a
large number of uni-cyecle acceleration sine-waves occurring randomly in time has a
response spectrum that is in good agreement with spectra derived from recorded ac-—
celerograms. Following Housner's paradigm, various investigators modeled strong mo-
tion as a stochastic process composed of a series of pulses distributed randomly in
time (Refs. 5-8). It is well known that many important characteristics of the res-
ponse of linear damped structures to earthquake motions can be modeled by the res-
ponse to white noise even though the frequency content of this model is known to be
unrealistic.

As a step toward improving the simulation, white noise has been passed through
a single-degree-of-freedom linear filter. Housner and Jennings (Ref. 9) modeled the
"primary phase" or "strong motion" part of accelerograms as a stationary Gaussian
random process to study the response of hysteretic structures. The average response
spectrum proposed by Housner (Ref. 37) was used to derive the power spectral density
(PSD) function of the process which was expressed in closed form by a mathematical
expression of the Kanai-Tajimi type widely used in engineering literature (Refs. 10-
11).

The stationary artificial acceleration time histories generated by the above
process have proved to be satisfactory in many studies. However, when modeling
ground motions of smaller events or for use in studies where damage accumulation is
of primary concern (e.g., soil liquefaction under cyclic loading), the assumption of



stationarity is not appropriate.

The simplest way to introduce nonstationarity is to make the intensity of mo-
tion per unit time a time function. This is accomplished by multiplying a segment
of a stationary process by a deterministic time-dependent envelope. (The multipli-
cation can be done at the white noise stage or after filtering the white noise pro-~
cess [Ref. 12]). Thus, the PSD function describes the frequency content of the mo-
tion, while the slowly varying envelope is used to model the initial build-up of
motion, the strong (almost stationary) central phase and slowly diminishing coda.
Bolotin (Ref. 13) appears to be the first to have suggested the use of a determinis-
tic envelope function. The form of the envelope does not have a significant effect
on the spectra of the simulated accelerograms as long as it varies slowly with time.
Various researchers modeled accelerograms as random processes with time-varying in-
tensity (Refs. 8, 12, 14-17, 19). Such a representation of earthquake strong ground
motions was used in connection with random vibration theory to determine the ex-
pected maximum response of structures (e.g., Refs. 20-23).

The assumption of stationary spectral characteristics seems satisfactory in
analyzing the earthquake response of linear structures in which only spectral com-
ponents in the vicinity of natural periods are important. However, as has been
demonstrated by several investigators (e.g., Ref. 24), when the mechanical proper-
ties of a structure deteriorate during an earthquake and its natural period is pro-
longed, later arrivals of relatively longer prevailing periods may cause a large
response which would not otherwise occur in response to motions with stationary
spectral shape.

Among several concepts proposed to represent nonstationary spectral character-
istics is Priestley's (Ref. 25) evolutionary spectrum. This concept offers the most
palatable transition from the power spectra associated with stationary stochastic
processes to those associated with nonstationary stochastic processes, and makes it
feasible to generate a mathematical desecription which accounts for the evolution of
both the intensity and temporally local frequency content of the process. Several
studies have been made on the time dependency of the spectral content of earthquake
accelerograms (e.g., Refs. 26-27). The evolutionary power spectrum may be estimated
either by the "Moving Window Fourier Transform Method" (e.g., Refs. 28-29) or more
accurately by the "multifilter technique" (Refs. 30-33). Attempts have been made to
parametrize and analytically describe the observed evolutionary power spectra (e.g.,
Refs. 29 and 31). However, all such descriptions are phenomenological and it is not
clear how they can be related to the physics of wave propagation and how (if at all)
they can be generalized. For a stochastic process with prescribed evolutionary
power spectrum, the method for generating sample time histories was established by
Shinozuka and Jan (Ref. 34).

Using a different approach, Trifunac (Refs. 35-36) proposed a method for gen-
erating artificial accelerograms which accounts for many aspects of the physics of
seismic wave propagation in a layered medium. The synthetic motions generated by
this method incorporate the properties of wave propagation by making use of theoret-
ical group dispersion data for a given site, and thus have time variations in fre-
quency content as well as in amplitude due to surface wave dispersion. The stochas-
tic nature of motion is captured by random phasing of the various frequency compo-
nents.

Finally, it should be pointed out that in the early years of earthquake engin-
eering, the spectral content of the simulated accelerograms was derived from empiri-
cal spectra such as those of Housner (Ref. 37) or Trifunac (Ref. 38). Recent ad-
vances in the field of engineering seismology (Refs. 39-43) have made it possible to
describe earthquake spectra and their associated scaling law (i.e., the law that
describes how spectra change with earthquake size), in terms of physical parameters
of the earthquake source and the attenuation characteristics of the tectonic zone of
interest. This constitutes a development in the right direction and we will discuss



it in a later section.

Analytical Representation of Earthquake Strong Motion as White Noise Process and
Filtered Poisson Process Having traced the historical development of stochastic
modeling of earthquake strong motion, let us present and discuss the analytical mo-
dels used in the simulation of accelerograms (for a more comprehensive presentation
see Ref. U4b),

The ground acceleration f(t) caused by strong-motion earthquakes can be simu-
lated by either the filtered white noise process model which is described by either
of the following two equations:

-] «©
£,(t) = [ ht-0¥t)n(ndr = vleX (8); £,(¢) = [ n-v¥onodae (1) (2)
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or by the filtered Poisson process model which is described by either one of the
following two equations:

©
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In Egs. 1 and 2, n(t) is a Gaussian white noise with spectral density equal to S,
h(t) is the impulse response function of a linear, time-invariant filter whose
Fourier transform H(w) specifies the form of the spectral density function
(= S|H(w)|?) of a stationary stochastic process given by:

X, (8) = [ h(t=t)n()dr (5)

-0

and ¥(t) is a deterministic function of time serving as the envelope to the sta-
tionary process X (t) in the model shown in Eq. ! and to the white noise n(t) in Eq.
2, thus making both processes f;(t) and fg(t) nonstationary. The difference in the
response of a linear structure when subjected to the ground acceleration f1(t) in
Eq. 1 and to fz(t) in Eq. 2 appears to be insignificant, if any at all. Both models
approximately retain the shape of the spectral density function of the underlying
stationary process if ¥(t) is chosen to be a slowly varying function of time.

In Egqs. 3 and 4, the sequence of time instants {..., t_1, to, t1, veo] indi-
cates Poisson arrival times with arrival rate A and {..., A_1, AS, A, ...] is a
sequence of mutually independent and identically distributed random variables An
with mean zero and variance ¢2:

E{An} =0 E{A;} = o2 (6)

where E{-} indicates the expectation. Defining now

2,(t) =
n

[ i¥:]

Aha(t-tn) (7

-0

as a series of Poisson impulses with arrival rate A and random amplitude An, the
stationary stochastic process given by

©
X, () = nE-w A h(t-t ] (8)
can be considered the output of a linear filter with impulse response function h(t)
to zq(t). Obviously then, if we consider the series of Poisson impulses z3(t) and
Zy(t) with arrival rate A and random amplitudes in the form of either An?(t) or
A ¥(t ):
n"''n
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Z4(t) = ng_m A v(e)s(t-t )5 Z,(t) = nz_w A ¥(t 6(t-t ) (9); (10

the (nonstationary) filtered Poisson processes fx(t) and fu(t) are obtained respec-
tively as the outputs of the same linear filter éo Z3(t) and Zy(t). As in Eq. 1,
f,(t) can be interpreted as a nonstationary filtered Poisson process obtained by
multiplying a stationary filtered Poisson process X,(t) by a deterministic function
of time ¥(t), whereas ¥(t) in Egs. 4 and 10 introduces a physically more plausible
nonstationarity into the random amplitudes of the underlying Poisson impulses.

It can be shown that
{r; ()} =0 i=1,2,3,4 a1

and that if the following relation holds

ro2 = 278 (12)
then the autocovariance functions of f;(t) (i=1,2) are such that

s{e, (0F ()} = E{r ()1 ()} = 2ns¥(e)¥(s) | n(t-v)n(s-r)dx (13)

B{e, (), ()} = B{r, (6)e, (s)} = 2ns [ nGt-tn(s-vyp2(t)dar (14)

-0
Equations 13 and 14 indicate that the filtered Poisson processes and filtered white
noise processes as defined above can be made identical up to the second moment by

imposin he conditio iven in Eq. 12. It can further be shown that (a) the pro-
éggses % %t? and f {tg %re Gaussign and (b? although f ¢ ). P

B 2 . 3(t) and £, (t) are in general
non-Gaussian, they are asymptotically Gaussian as A + ® with Ag*“kept constant.

Finally, it can be shown (Ref. 12) that f)(t) in Eq. 4 is equivalent to
* = -
£X(t) E Anh(t tn) (15)

if the underlying Poisson process has nonstationary arrival rate A¥2(t). This fact
has been directly used by Lin (Ref. 45) to produce nonstationarity in his model for
ground acceleration. Furthermore, Lin (Ref. U46) demonstrated that if E[An] = 0, the
filtered Poisson process given in Eq. 15 is equivalent, at least up to the second
moment, to an evolutionary process with evolutionary power.

Digital Generation of Sample Functions As alluded to earlier, the filtered Poisson
process model is more amenable to plausible physical interpretation when compared to
the filtered white noise process model. 1In terms of efficiency of digital simula-
tion of sample functions, however, direct use of the filtered Poisson process model
as indicated in Egs. 3 and Y4 requires digital generation of Poisson arrival times
and random amplitudes, as well as summation, and is usually more costly when com-
pared to use of Egs. 1 and 2 that requires digital generation of independent Gaus-
sian random numbers and integration (or equivalently summation). Therefore, even
though the filtered Poisson process model appears more preferable in terms of physi-
cal interpretation, sample functions of the stochastic process simulating the ground
acceleration are usually generated with the aid of the filtered white noise model.
This generation is performed under the assumption that the condition shown in Eq. 12
is satisfied or under the premise that it is good enough for the purpose of engi-
neering analysis to use the filtered white noise model in place of the filtered
Poisson model since their first two moments are identical. From the viewpoint of
applications to structural analysis problems, it is important to note that, as far
as linear responses are concerned, these two families of models for the simulation

VII-55



of ground acceleration produce structural responses which are identical asymptoti-
cally as XA » = (and hence both are Gaussian) and if Eq. 12 is satisfied. Otherwise,
they are identical up to the second moment.

A method which is general and easy to implement for the digital simulation of
seimograms is the "spectral representation method" introduced by Shinozuka and his
associates (Refs. 34, 47-49), If a nonstationary process yo(t) has an evolutionary
power spectrum of the form lA(t,w)lzf(m), then the process can be simulated by the
following expression, as N » o:

N
y(t) =v2 | Y2[A(t,w.)]*f 0, JAw cos(w t+s.) (16)
i< 3 3 370

where w, = jAw. (j=1,2,...,N). An upper bound of the frequency w_ = NeAw is im-
plicit in Eq. 46 and ¢. are independent random phase angles uniformly distributed
over the range (0,21:).J Note that the simulated process y(t) is asymptotically Gaus-
sian as N becomes large due to the central limit theorem. (The Gaussian nature of
real accelerograms has been verified by Ref. 39 for the 1971 San Fernando records.)
It can be shown that the simulated process y(t) possesses the target evolutionary
power spectrum as N »> =,

Thus, with the spectral representation method, we can obtain sample accelero-
grams if we know the spectrum of the earthquake source and the attenuation charac-
teristics of the tectonic region of interest. The earthquake source spectrum may be
estimated either empirically, using regression analysis on the data (e.g., Ref. 38)
or may be based on a seismological model of the source (e.g., Refs. 40 and 43).

Physical Basis of Stochastic Models of Earthquake Accelerograms It is evident that
the original work of Housner (Refs. 1 and 2) provide a physical basis for stochastic
modeling of earthquake accelerograms. As already stated, Housner's hypothesis is
that strong-motion accelerograms are formed by superposition of waves which are gen-
erated by a swarm of dislocations on the fault plane. The random timing of the
rupture of the dislocations and subsequent scattering that may occur along the prop-
agation path, justify the random arrival time of the waves at an observation

point. At the time Housner formed the above hypothesis, earthquake source theory
and methods for evaluating Green functions for realistic earth media were not well
developed. Thus Housner proceeded by considering simple - yet effective for earth-
quake engineering purposes - functional forms for radiated waves. We now know that
high frequency waves emanate from the rupture front as it interacts with heterogene-
ous (i.e., barriers or asperities) of the fault plane (Refs. 41, 42 and 50). The
recorded motion may be computed by convolving the slip function (i.e., the function
which describes the evolution of slippage at a point on the fault plane) with the
Green tensor of the earth (Ref. 51).

Housner's original idea on modeling high frequency seismic radiation has ob-—
tained a more concrete expression with the "specific barrier model" proposed recent-
ly by Papageorgiou and Aki (Refs. 41 and 42). According to this model, the earth-
quake source is represented by circular cracks distributed on the fault plane and
the high frequency radiation of the model is controlled by "stopping phases"™ which
are emitted as crack ruptures are arrested by barriers. What is particularly im-
portant to mention about this model is that its key physical parameter, the local
stress drop, may be also estimated by geological exploration methods (paleoseismol-
ogy) and thus the model is potentially useful in predicting strong ground motion
even for tectonic areas for which there are no recordings (Ref. 52).

Spatial Variation of Earthquake Strong Ground Motion Let us now discuss the spa-
tial characteristics of earthquake motions. The spatial variability of strong
ground motion, as observed in recordings obtained in dense arrays, was found to be
rather high even over short distances (Refs. 53-58). The spatial variation of free—
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field motion is an important consideration for the seismic design of elongated
structures supported on extended foundations or multiple supports (e.g., elongated
buildings on mat foundations or footings, dams, long-span bridges, buried lifelines
such as tunnels and pipelines), and consequently, engineers need to measure the
variations of earthquake motions over distances comparable to the dimensions of
large structures (i.e., 50-1,000 m).

The spatial variability of earthquake motions may be due to: (1) nonvertical
incidence of body-wave energy, (2) surface-wave propagation, (3) waves arriving from
different points of an extended source, (4) amplitude changes and time delays due to
hetergeneities along the propagation path which act as scatterers.

The effects of nonvertical incidence of body wave energy and surface-wave
propagation on the response of structures have been studied by various investigators
(e.g., Refs. 59-61) and are well documented. The spatial variation of ground mo-
tions due to wave passage in general causes a reduction in the translational res-
ponse of the foundation and an increase in the rocking and torsional response. For
structures supported on flexible foundations or multiple supports and for buried
lifelines (e.g., pipelines and tunnels), the spatial variation of the ground motion
may cause increased localized deformations and strains.

The two factors of spatial variability of ground motion discussed above, i.e.,
nonvertical incidence of body waves and surface-wave propagation are associated with
the coherent component of seismic radiation. However, the spatial variability of
ground motion resulting from the incoherent component of seismic radiation (i.e.,
seismic waves scattered by heterogeneities along the propagation path and which
arrive at an observation point from various directions) has been shown to be equally
significant. Analytical studies of the response of a rigid square foundation sub-~
jected to spatially random ground motion conducted by Luco and Wong (Ref. 62) have
shown that the spatial randomness of ground motion produces effects similar to the
effects of wave passage, including reduction of the translational components of the
response at high frequencies and creation of rocking and torsional response compo-
nents.

A major source of data for improving our understanding of the spatial variabil-
ity of strong ground motion is the SMART-1 array. This is the first dense multiple-
element array of digital strong-motion seismographs which to provide measurements of
seismic waves of strong earthquakes near their sources. As discussed by Bolt et al.
(Ref. 56), a pioneering work of this kind, for, however, small ground motions, was
carried out in Japan by Aki and Tsujiura (Ref. 63) using a small array of seismo-
graphs and correlational analysis. Analyses of data recorded so far by the array
have been reported by various investigators (for a review, see Ref. 57). The major
conclusion derived from these analyses is that the coherency of ground motion is a
decreasing function of distance and frequency, for frequencies above approximately 1
Hz. More specifically, comparison of seismograms and wave number-frequency spectral
plots shows that coherent seismic energy is associated with low and intermediate
frequency components (< 1 Hz). This coherent component of ground motion corresponds
to the expected body and surface waves which can be modeled using deterministic
methods developed by seismologists. As the frequency increases, however, the per-
centage of incoherent energy increases. At high frequencies (above 3 Hz for S-waves
at the SMART-1 array site), the recorded motion is dominated by incoherent energy.
These observations are consistent with the hypothesis that the lithosphere is a
strongly heterogeneous medium causing scattering of high-frequency waves (Ref. 64).
This lack of spatial coherence at high frequencies also explains why wave form mod-
eling of strong ground motion does not closely match observed high-frequency waves.

Given the above observations, it is not practical (although in principle pos-
sible) to model this incoherent component of ground motion deterministically because
even small variations in the velocity structure can produce significant phase shifts
in high-frequency energy. Thus, as suggested by Abrahamson and Bolt (Ref. 65), a



practical approach to modeling would be to generate a suite of synthetic ground mo-
tions in which the Fourier phase of the incoherent energy is varied in a statistical
manner while the Fourier phase of the coherent energy remains unchanged.

In modeling the effects on engineering structures of the coherent component of
ground motion (i.e., wave passage effects), the spatial variation of ground motion
is typically represented in the form of plane waves. On the other hand, in modeling
the spatial variability of the incoherent component of ground motion, the cross-cor-
relation or coherence function between the motion of two points is typically used.

A major difficulty in the statistical characterization of the incoherent component
of motion is that the functional dependence of the coherence function on distance
and frequency has not been fully established. Various empirical functional forms
have been proposed by researchers who have analyzed the SMART-1 array data primarily
for the purpose of evaluating the seismic risk of lifelines (pipelines) (Ref. 66)
while Luco and Wong (Ref. 62) used a functional form resulting from theoretical mod-
els of scalar shear wave propagation through a random medium. Clearly, a better un-
derstanding of the scattering phenomena of high-frequency waves is needed in order
to establish the functional form(s) of the coherence function and its dependence on
physical phenomena on physical parameters of the crustal structures through which
the seismic waves propagate.

Concluding, we should point out that as for the temporal variability of ground
motion, the spectral representation method can be used for the digital simulation
(in space and time) of wave fields with given power spectra. A two-dimensional wave
field yo(x t) with spectral content |A(x,t;k,w)]2+f(x,w) can be simulated as fol-
lows:

N N Ny
y(xt)—/'Z Z ) /2A2th,y,w»<1,n<1)
m=1 §_=1 % =1 Yy
X y
. /f[le Ky mJAwAK AK . cos[wmt gy Xk Kgg ¥ * Sme, 4 ] a7
X y X y Xy
where
Yy *xu Kyu
(Am,AKX,AKy) = (ﬁ—,ﬁ—“,ﬁ—“)
t x y
mm = meAw; Kili = li-AKi m=1,2,...,Nt; 2i=1,2,...,Ni; i=x,y
with ¢ = independent random phase angles uniformly distributed in (0,27).

me_ %

Xy

Shinozuka et al. (Ref. 67) have used the method in connection with power spec~

tra inferred from analysis of SMART-1 array data to generate multiple realizations
with the same statistical characteristics as those of the recorded wave field. A
topic that merits further attention is the possibility of combining the spectral
representation method for generating wave fields with the discrete wave number
method for representing seismic sources (Refs. 68-69). The discrete wave number
method could be used to evaluate the power spectrum of the motion at a site and
subsequently the spectral representation method could be used to simulate realiza-
tions of the wave field by randomly varying the phase of the spectral components.
Such a procedure could be used, for example, to simulate the spatial variability of
ground motion at a site in the vicinity of an extended source.

CONCLUSION

Having reviewed the engineering approach in modeling strong ground motion, the
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following question arises. Where does such an approach stand in comparison with
seismological methods of strong ground motion synthesis? This question is particu-
larly critical in view of the fact that developments in the last two decades in
strong motion seismology make it possible for seismologists to synthesize ground mo-
tions generated by a given fault using Green functions (synthetic or empirical) of
very realistic earth models. Part of the answer to the above question was given in
the introduction where we pointed out that the intent of the engineering approach is
to capture in an expedient way the essential characteristics of high-frequency mo-—
tion at an average rock site from an average earthquake of specified size. This is
particularly convenient from an engineering point of view because many times the
only information available to the designer about the earthquake loading is a measure
of the magnitude/size and epicentral distance. With such limited information, the
engineering approach makes it possible to capture the gross characteristics of the
expected ground motions (assuming proper earthquake source spectra and attenuation
curves are used). Furthermore, the engineering approach makes it easy (and inexpen-
sive) to supplement the conventional peak ground acceleration (PGA)-based seismic
hazard curve (i.e., the curve which describes the annual exceedance probability as a
function of PGA) with uniform risk spectra, thus incorporating more information into
the probabilistic risk assessment (PRA). To mention an example, such an approach
has been adopted by the Tokyo Electric Power Services Corporation (TEPSCO) for a
seismic PRA study involving nuclear power plant structures (Ref. 70).

However, it is important to realize the limitations of the engineering ap-
proach. For instance, the engineering approach may be inappropriate for modeling
near-fault ground motions. An important characteristic of such motions are long-
duration acceleration pulses which have important implications for the dynamic res-
ponse of buildings located near faults (Refs. 71-72). The methods we discussed in
modeling ground motion are not tailored to model such pulses. Furthermore, radia-
tion patterns and directivity effects shich influence the amplitude and duration
characteristics of records are not accounted for in the engineering approach. This
was clearly demonstrated in a simulation study (Ref. 73) of the long-period ground
motions of the Fort Tejon, California, 1857 earthquake in which the synthetic seis-
mograms obtained using empirical Green functions were compared with the artificial
time histories generated by Jennings et al. (Ref. 68).

Summarizing, despite the various limitations associated with the engineering
approach for modeling ground motions, it is still appealing and useful in engineer-
ing practice, especially given the limited resources and data usually available to
design engineers.
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