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SUMMARY

This paper presents a method to estimate both the response values and optimal
control forces of structures with active control devices. A combination of the modal
viscous damping factors is selected as the performance criterion of seismic response
reduction. The maximum control force is computed as the function with respect to the
natural frequencies by making use of both the pole assignment method and a response
spectrum procedure, which control force is optimized by a non-linear programming on
the basis of the quasi-Newton methods. The proposed method is applied to a MDOF
structure. The effectiveness and reliabilty are verified by time-history analyses.

INTRODUCT ION

In an engineering sense, it is desirable to be able to judge the effectiveness
of a designed control mechanism and the required control force at the early stage of
design practice. From the viewpoint, this paper presents a method to evaluate both
response values and demanded control energy by making use of the method which
combines the pole~assignment procedure with a response spectrum approach and a quasi-
Newton method.

Originally, an aim to control structures is to reduce seismic response values of
structures by giving control energy as small as possible. One alternative to achieve
this purpose is to realize the structures with high damping capacity which are
generated by making use of both control mechanisms and control forces. Considering
from this viewpoint, the simplest performance criterion of seismic response reduction
is to define a combination of the modal viscous damping factors. The required
control force can be accordingly estimated from the applied response spectra of
velocities and displacements under different viscous damping factors, when the
natural frequencies are assumed. Therefore, the feed back gains of the system can be
optimized by minimizing the square value of, the control force which is the function
with respect to the natural frequencies. The applied numerical method for optimaza-
tion is a non-linear programming on the basis of the quasi-Newton methods.
Consequently, we found that the presented method is useful for judging the effective-
ness of a designed control mechanism from both these mode shapes with real numbers
and the applied response spectra.

MATHEMATICAL FORMULATION

A Single Degree of Freedom System A SDOF system is introduced to demonstrate the
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conceptual flow. The state space description is given by

.

a=Aaq+b (f/m) - ik ) (1)
o= {3} a- [The. et b= {5} i-{}} @

in which,d is the displacement of the system,v the velocity, mo the total mass of the
structure, g the ground displacement, h and w the viscous damping factor and
the natural circular frequency, respectively. The symbols b and i indicate the loca-
tion vectors of control force f and excitation, respectively. According to the pole
assignment method, the control force is determined by the inner product of the feed
back gains vector p and the state variables vector q which is defined as follows.

(f/me) = p'a = [ -2hw+hcwe,~w2+(w:)2] q (3
Substituting Eqs. (2) and (3) into Eq. (1), then Egs. (4) and (5) are obtained.

n

a=Acg-ig (4)
_ _ 2
Ao= [ th;t)c. (we) (5)
Thus, the properties of the controlled structure vary from w to we in the
natural frequencies and from h to hc in the viscous damping factors. In the next
place, the square value of control force is computed as follows.
J = (f/m)2 = p'q q'p (6)
The expectation of Eq. (6) is given by
E(I) = p"Elq qIp = p' [EW' E”] p=p' [EW ] o] {E” J P m
EXV. EX)Z E}()l EX“(
in which [ oo 1 is the coefficient matrix of correlation.
_ 1 va} _ Evx
[p ] - [,Dv< 1 Pvx = 4 EBvv Exx (8)
The coefficients p v« are computed from the random process theory of the
structures subjected to the white-noise. In addition, it was pointed out that the

maximum response values Vmax and Xmax are approximately proportional to the
standard deviations ¥ Evv and < Exx, respectively(Ref.1), and hence the maximum
value of Eq.(7) can be approximated by

ST L SR L o

Thus, the maximum response values and the control force can be estimated from the
response spectra of a selected ground motion. Since the viscous damping factor is
used as the performance ecriterion of response reduction, the optimazation of the
objective function of Eq. (3), which is accordingly assumed as the function of
frequency, is carried out by using the Newton method. This approach requires the
differentials of the first order and the second one of the function F with respect
to the variable we, including the derivatives of the maximum response values.

For this reason, the spline functions of the third order(Ref.2) are used to provide
the continuous functions of response spectra which are computed from the same
discrete response values as ordinary response spectra.

A Multi-Degree-of-Freedom System A state equation of an n-degrees of freedom
structure can be rewritten by substituting the following terms defined by Eq. (10)
into Bq. (1) instead of the terms q, A, b and i of Eq. (2).

[V _[-M'c, 'H"K} _{moM‘tb'} . {1}

"',{d} A'[ 1, 0 b=1"" =10 (10)
where, v =d, and M, C and K represent the mass, viscous damping and stiffness
matrices. The symbols b and i are the location vectors of the control force and
excitations. Now, if the state variables vector x is assumed by

x=TR N¢Jz (11)
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,the state equation can be rewritten as follows.
RD¢Jdz=T'ATRD>¢Jz+ T'b (/me) - T7'i g (12)

in which the similar transformation T 'A T is carried out under the condition that
the 2n-th column vector of T satisfies Eq.(13),in order to provide the companion
matrix which has the same form as Eq. (17) with the coefficients an instead of the

elements bnm. And the control force factor(f/mo) is assigned by Egs. (14) and (15).
(T'p] "= [ 0,0,0,....... ,0,1] (13)
(f/mo) = p'x = p'TR [~¢-Jz (14)
p'T = [ai-bi,ae-bz,as=bs,.....,a2n"b2n] X (15)

Substituting from Eq. (18) to Eq. (15) 1into Eq.(12) and assuming that the similar
transformation T"'A T has the companion form, Eqs. (16) and (17) are given.

Dodz=R'A: RDo¢Jdz +R'T i g (16)

1
Az = [T'AT+T'bp'T]-= Ly (17)
1
-b1, -b2, -bs, ..... , =bzn

Futhermore, the shape mode matrix R and the above companion matrix A:- satisfy the
following relationships.
A =R'A:R=diag. [A1, X1, A2, A2, """ s A, Al (18)
Amn = -hnown+ i wnd1l -he? = An = ‘hm(x)m_i'wmdl“hmz (19)
where hm and wn are the assigned viscous damping factor and circular frequency of
the m-th mode. It is needless to say that the coefficients bmn of the characterestic

equation of the controlled structure are determined from the assigned pole-values.
And R has the form of Vandermonde matrix.

A1, zil , Ao, X2 oo , An o, zgn
R = 112‘ 112' 122’ TZQ AR , ln"). ln2 (20)
;{12n'712n' Azzn"fzzn' ...... .ann'THZn
In the next place, the diagonal matrix [>¢~J is defined as follows.
RIT ' = gL, 1" = (L1 L 1,17 (21)

The following equation can thus be obtained.

z=Az+1¢g (22)

However, it is difficult to figure out the total image of the behavior of the
system from the participation functions TR[>¢~J, since the mode shape matrix is
composed of complex numbers. In order to improve this, the transformation of Eq. (23)

is introduced, and Eq. (24) is derived as a result.

z=D"'q (23)

a=DAD'q+D1g (24)
in which the matrix D is defined as follows.

Di p. me L {M, -zm] D-1=[1,—7m] (25)
D = ."D Amn=2n 1, -1 1, -An
n
The transformation D A D°! leads to the canonical form.
A _[-2hnwn, ) mz]
DA D= Az, An { 1, (26)
An

Furthermore, the following relation is also obtained from the definition of D.

(p1] ™= [1,0,1,0, - --,1,0] = Ip” 2n
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Considering the definition of D,it is evident that R D™! becomes the matrix with
real numbers. For this reason, the transformation introduced by

x =T[RD'] [D>¢~JD'] q = Req (28)

gives the advantage that the computations can be carried out with real numbers only.
The required control force is consequently represented by substituting Eq.(28) into
the term x of Eq. (14), and the expectation of its square value becomes the following
objective function F.

F =E(Insx) =B [p"xx'p] = p"Ro E [qa’] B>"p (29)

As stated before, since the viscous damping factors of the modal coordinates are
fixed as the mesure of response reduction, the optimal modal frequencies for the
objective function F are obtained by the following recurrence formula.

@ c | n+lt ¥ @¢ l n - [sz(@c | ] -1 [vF(@c [ n)] (30)

In order to obtain the inverse matrix of the Hesse matrix V2F(we | n), the Broydon-
Fletcher-Goldfarb~Shanno method 1is applied, which is a typical procedure among the
quasi-Newton methods (Ref. 3). Furthermore, the gradient vector VF(wc | n) can be
analytically computed, because the matrix of mode shapes is explicitly expressed in
terms of frequencies.

NUMERICAL EXAMPLES

The objectives of this section is to verify the reliability of the procedure
andto examine the dependence of the derived feed back gains on the properties of
applied ground motions. From the viewpoint, the presented method is examined by
applying this to a three-story structure subjected to the following ground motions:
A = the E1 Centro acceleration record(Imperial Valley Earthquake, 1940, N-S, 340 gal),
B = the Hachinohe Harbor one(Tokachi-oki Earthquake, 1968, N-S, 225 gal) and C = the
Tohoku University one (Miyagi-ken-oki Earthquake, 1978, N-S,258gal). Figure 1 shows
the spectra of response velocities with the viscous damping factor of h=0.25 under
the applied accelerograms.

The sample srtructure is modeled on the basis of the philosophy that active
controlled structures should be mainly composed of passive controllers, partly
installed with actuators, furthermore the active controllers should be designed to
make full use of damping capacity of passive controllers by optimizing the feed
back gains. The proportion of the structure is accordingly described as follows; the
weights of all stories are 100 tonf, the distribution of spring constants is 3 tf/cem,
5 tf/cm and 6 tf/cm in order from the uppermost story. The mathematical model of
the control mechanisms is given in Fig.2, like the inverted pendulum, where the levers
are attached auxiliary masses at the one ends and pinned to the floors at the other
ends as the fulcurm(pin-support). However, the actuator is only installed at between
the 2nd mass and the 3rd one. Fig.3 shows the practical mechanism which has several
link mechanisms attached to the lever ,in order to eliminate the unexpected effect
due to the arc-motions of the lever which gives the disadvantage of geometrical
nonlinear behavior to the control actuator. More detailed description of the
theoretical background and the experimental results of the SDOF structure with the
similar mechanism can be found in Ref. 4. Any way, the matrices M,C ,b" and i’ are
written as follows.

ai, az b1, - b1 1 i1
M= as, az C= bz, ~ b1 b o=¢ -1 i =< iz (31)
sym as sym bz 0 iz

ar =m+ B%my, az = -B(B-Umg, az =m+ (B-1)%na + B3ma
b1 = (B8-1)%c, b2 = 2(B-1)% ,i1 =m+ Bma, i2 =m ~(B-1)ms + Bmd

where the lever ratios B8= b/a are 7.0 (see Fig.2), the weights of auxiliary masses
m¢ are 0.01 times the ones of the floor masses m and the values of 0.01tf -« sec/cm

(32)

i
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are assigned to the viscous damping constants of ¢ in order to equivalently convert
the effects of the friction between the walls and the auxiliary masses.

72
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Table 1. Properties of the structure

Model Viscous damping factor Natural frequency [rad]

Ist 2nd 3rd Ist 2nd 3rd

Uncontrolled model 0.032 0.077 0.122 3.16 7.175 12. 25

Passive controlled model | 0.117 0.302 0.286 2.97 5.89 3.01

Table 2. Optimaized results

Optimal feed back gains P' Control F. [ Natural Freq.[rad]
Va V> vy ds do ds f/mo [Gall 1-st 2-nd 3-rd
Al | -0.106 -0.075 0.251 [-2.274 2.302 1.80521.6(24.1) 2.88 3.00 8.05
Bl [-0.092 -0.078 0.247 | -2.213 2.228 1.742[18.4(20.7) 2.92 3.08 8.05
C1 [ -0.107 -0.075 0.250 | -2.277 2.278 1.864 | 25.4(39.1) 2.88 2.99 8.06
A2 | -0.098 0.204 0.290 [-1.325 2.344-0.37039.1(57.0) 2.97 4.46 7.95
B2 | -0.127 0.177 0.301 |-1.535 2.463-0.006 | 30.0¢(48.2) 2.97 4.16 7.97
C21-0.246 0.193 0.243 | -2.380 7.368-7.395]17.1(11.8) 3.05 2.92 7.20
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Table 3. Comparision between Response results

Response Velocities Response Displacements C. E.
V3 Ve V1 ds d2 d1
[en/sec] [cm/sec] [en/secl [em] [em] [em] [W/tf]

6.9(7. 1) [ 50.9
5.8(5.0) 27.5
6.9(7. 3) 78,17

AL 53.9(50.0) 44.1(44.6) 27.0(24.6) | 17.5(17.3) 13. 1(13. ;

)

;s.s(e.s) 197.5 |
)

1
Bl [43.3(87.9) 40.4(35.8) 23.2(22.0) [ 14.7(13.5) 11.1( 9.7
C1]64.8(70.7) 56.1(59.8) 32.3(30.7) [ 15 1(15.9) 12.8(14.4
A2 |132.7(31.5) 43.8(50.4) 26.3(27.7) [ 11.3(11.0) 12.1(12.0
B2 | 31.8(32.9) 35.8(35.8) 20.2(20.7) | 8.5( 8.6) 9.4( 9.3) 5.1(4.8) 66. 4
C2175.6(79.8) 55.8(54.8) 383.7(27.8) [ 17.7(18.4) 12.4(12.7) 6.8(6.5) 35.8

The eigen values of the passive controlled structure, as listed in Tablel, vary
from 3.16 rad.to 2.97 rad. in the first natural frequency, from 3% to 11.7% in the
viscous damping factor of the first mode, when the controllers without an actuator
are installed at the all stories. Table 2 indicates the results for the optimal feed
back gains of the active controller, when the two combinations of the modal damping
factors as the performance criteria are assigned, i.e, the first is 25%, 35% and 30%
in order from the first mode(which is expressed with the suffix of '1'), the second
25%,10% and 30% in the same order(which is expressed with the suffix of '2°). The
required control forces are also listed in Table 2, in which the values in the
parentheses are the results computed from the time history analyses for the

controlled structures with the obtained feed back gains. The mode shapes
normalized by the particapation factors are drawn in Fig. 4,where the symbols r;’ and
r; express the vectors with respect to the ratio of the response velocity of the
j-th mode to the correspond-ing natural circular frequency and the corresponding

response displacement, respectively. In the figure, the solid lines indicate the

results for the passive system and the dashed lines for the case of Al. Table 3
compares the response results obtained from this procedure with the ones (values in
parentheses) derived from the time history analyses. The required control energy
ratios( watt/tonf) is also listed in the right-hand side of this Table

CONCLUSION

Based on the numerical results, the following conclusions were derived.
1)The estimated response values are in good agreement with the results obtained from
the time history analyses(Table-3). On the other hand, almost all the evaluated
control forces are slightly smaller than the ones derived from the simulations(Table-
2), which are probably caused by making use of the values of correlation based on the
white-noise not the applied ground motions.
2)Considering that the mode shapes of active controlled structures are remarkably
changed owing to the combinations of the modal viscous damping factors(Fig.4), the
presented method is very useful for developing a new control mechanism, because we
can easily track the changes of required control forces from mode configurations
with real numbers and natural frequencies.

However, it is needless to say that we have to statistically proceed to the
further investigation, including the research on what kinds of combinations of modal
viscous damping factors shall be optimal under the specified spectra.
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