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SUMMARY

This paper describes some recent developments at UMR in the areas of
structural optimization and the combination of optimum design with active
control algorithms. The structural optimization has been developed for
designing economical and serviceable building structures with consideration of
deterministic or nondeterministic resistance and response. The structural
optimization technique is further developed to be combined with optimal control
for active protections of tendon devices or mass-dampers or a combination of
them for which the buildings are subjected to earthquake excitations.

INTRODUCTION

The optimum design concept has been recognized as being more rational and
reliable than those that require the conventional trial and error process (Ref.
1). It is because for a given set of constraints, such as allowable stresses,
displacements, drifts, frequencies, upper and lower bounds of member sizes, and
given seismic loads, such as equivalent forces in the code provisions, spectra,
or time-histories, the stiffnesses of members are automatically selected
through the mathematical logic (structural synthesis) written in the computer
program. Consequently, the strengths of the constituent members are uniformly
distributed, and the rigidity of every component can uniquely satisfy the
demands of the external loads and the code requirements, such as displacements
and drifts. By using an optimum design computer program, one can conduct a
project schedule at a high speed and thus increase the benefit because of the
time that is saved. BAn optimum design program can also be used for parametric
studies to identify which structural system is more economical and serviceable
than the other and assess the principles of various building code provisions as
to whether they are as logical as they are intended to be (Refs. 2,3,4,5,6).

Structural control is achieved by using passive or active control devices.
The passive devices utilize the fact that energy dissipating mechanisms can be
activated by the motion of the structure itself. Active control devices
require external energy for their operation. Extensive optimal control
algorithms are available (Refs. 7 and 8). Recent studies have recognized the
importance of combining structural optimization with control (Ref. 9). The
advantages of the approach are quite obvious that it can have all the strong
points of both structural optimization and optimal control.
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Structural Optimization and Optimum Control Algorithm Structural optimization
algorithms may be classified into two major areas of mathematical programming
and optimality criteria (Refs. 10,11,12), and can be expressed as

Minimize: Cp(x) (1)
Subject to: Yj (x) < dj; ij=1,2,...,m (2)
and x(g) <xX< x(u) (3)

where CT is the objective function of structural weight or structural cost

including the costs of materials, construction, maintenance, damages, etc., Yj

consist of m constraint functions for allowable stresses, displacements,
buckling capacity, natural frequencies, etc.; and x represent design variables

which can be cross-sectional areas, moments of inertia, and thicknesses of the
constituent members of a structural system. Equations (1) and (2) can be
formulated for deterministic or nondeterministic resistance and response (Refs.
12 and 13). For the optimum control, the equation of motion of the N-story
shear building equipped with a number of active tendons and subjected to an
earthquake acceleration record, Xg(t), is

(MI{x(t)} + [CI{x(t)} + [KI{x(t)} = [YI{u(t)} + {8} Xg(t) (4)

where [M] = mass matrix, [C] = damping matrix, [K] = stiffness matrix, {x(t)} =
story relative displacements, {u(t)} = control forces, [yY] = location for AT,
and {8} = excitation influence vector. Equation (4) can be expressed as

{z2(t)} = [Al{z(t)} + [Bl{u(t)} + {C} Xg(t) (5)

where {z(t)} = {%g%%%%}, a 2Nx1 state-vector, [A] = plant matrix, [B] =

location matrix, and {C} = excitation vector. The optimal control {u*(t)}, is
derived by minimizing an instantaneous time-dependent performance index Jp(t)

defined as
Jp(t) = {Z(t)}T[Q]{Z(t)} + {U(t)}T[R]{U(t)} (6)

where [Q] = positive semidefinite weighting matrix, and [R] = positive definite
weighting matrix and satisfying the state-equation, Eq. (5). The performance
index JP(t) is minimized at every time instant t, for all t in the interval

Ogtztf, where t_ is the earthquake duration.

f
CONSIDERATIONS IN UMR WORK

Deterministic 2-D Structures A computer program designated as ODSEWS-2D-II
(Optimum Design of 2-Dimensional Steel Structures for Static, Earthquake, and
Wind Forces-Version II) was developed for the purpose of analyzing and
designing two-dimensional structures. The formulation is based on the
displacement method and the consistent mass model, and includes second-order P-
A forces. The structural systems to which it can be applied are trusses, and
unbraced and braced frames. The seismic excitations can be one-dimensional or
two-dimensional; one-dimension is horizontal, two-dimensions is horizontal
coupled with vertical. The dynamic forces may be 1) seismic excitations at the
base, 2) dynamic forces applied at the structural nodes, and 3) wind forces
acting on the structural surfaces. The seismic excitations include 1) the
records of actual earthquakes, 2) response spectra of Newmark, Seed, and
Housner, and those available in the Chinese Seismic Building Code and ATC-3-06,
3) the Uniform Building Code, 4) the Chinese Seismic Building Code, and 5) the
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ATC-3-06 provisions including the equivalent lateral forces with or without
soil-structure interaction and the modal analysis with or without soil-
structure interaction. The constituent members of a system are made of either
built-up sections or hot-rolled wide flange sections. The constraints
considered are stresses, displacements, story drifts, natural frequencies,
maximum differences between relative stiffnesses, and upper and lower bounds of
cross sections. The objective is to obtain the minimum weight or minimum cost
of a structural system. The minimum cost includes 1) basic steel and extra
size prices, 2) painting cost, 3) connection and welding steel, and 4) damages.

Deterministic 3-D Structures In this development (Ref. 4), the structural
elements are steel and reinforced concrete members. The steel elements are
beams, beam-columns, and braces; and the reinforced-concrete elements are the
beam-columns and the flexural panels. The structural model was developed with
computational efficiency as its goal. Each structure uses a rigid (in plane)
slab system in order to represent the planar response with three degrees of
freedom. The slab is assumed to be flexible in the out of plane directions in
order to allow vertical deflections at each structural node. A reduced
stiffness matrix is found by condensing the rotational degrees of freedom at
each structural node. Therefore, a structure can be represented with three
degrees of freedom in the plane of each floor and a vertical degree of freedom
at each structural node. This model provides a means of studying three-
dimensional structures subjected to a variety of loadings including multi-
component ground motions.

Dynamic input includes response spectra and code provisions. The response
spectra were developed for multi-component excitations. The computer algorithm
allows the use of three different response spectra for each seismic analysis
which allows both translational degrees of freedom and the vertical degrees of
freedom to be excited through the use of their own response spectra. The ATC-
03 provisions provide two approaches for seismic analysis, the equivalent
lateral force technique and the modal analysis approach. The structural
optimization is based on these forces and procedures recommended in the
provisions. A computer program called ODRESB-3D was developed for the work.

Nondeterministic Structures The seismic loadings used in this study (Ref. 13)
include UBC, NNSRS, and stationary process. Three types of practical and
commonly used loading models are employed in this study. The first type is the
UBC codified seismic load. The second is the Newmark's nondeterministic
seismic response spectrum (NNSRS) including the statistical response results of
actual horizontal or vertical earthquake records. The third is a Gaussian
random process with a constant or varied seismic spectrum which has been
commonly used to represent the seismic random load.

The parameter study in the reliability-based optimum design includes the
parameter study for UBC by investigating the sensitivity of some parameters and
comparisons of formulations. The parameters studied are the coefficient of
variation of column resistance parameters and coefficient of variation for UBC.
The formulation comparisons are the probability distributions of response and
resistance, the variance approaches, and the zone coefficients in UBC. The
parameters and formulations are also studied for NNSRS such as variations of
column resistance, peak ground acceleration, and different variance approaches.
For the stationary seismic loads, the formulations for various stationary
seismic spectra and failure probability expressions are compared in the optimal
solutions. Further parameter studies are the influences of nonstructural and
expected failure cost on the optimum design results. In the past, four live
load models of ANSI (American National Standard Institute), NBS (National
Bureau of Standards), UK (United Kingdom), and UNREDUCED (actual) models were
proposed. However, no comparison has been performed to show if there is any
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difference among these models. In this study the comparison of four live
models is investigated.

The cost objective function may have three components: initial
construction cost (CI)' future failure cost (Lf), and system probability of

failure (P They are expressed as

) -

= + 7
CT CI LfPfT (7)
in which ¢_ = C .SL.A, + C_, C_ = an unit steel volume cost, C_ = nonstructural
I ui i1 n n

members cost, Lf = CVCI + CL,

cost to initial cost, CL = the business and human losses, and P

u
Cv = coefficient to describe the ratio of repair
T system
probability of failure. Reliability is based on two mathematical models of
normal and lognormal distribution with two different variance approaches. The
constraints include the reliability considerations for displacement and
internal forces of individual members as well as a system.

Structural Optimization Combined With Optimum Control The study (Ref. 9) deals
with the optimal design of building structures equipped with active control
systems. The control systems considered are the active mass damper, the active
tendon system, and a combination of the two systems. The work included the
Ricatti closed-loop algorithm based on classical control theory, non-optimal
closed-loop control in the frequency-domain, and instantaneous open-loop,
closed-loop, and open-closed-loop algorithms in the time-domain. Among all the
algorithms mentioned above, the time-domain algorithms have been extensively
studied for the combined effect of structural optimization with optimal
control. Also included in the work are a critical-mode control algorithm and
the resulting spillover effect on the uncontrolled modes, the optimal location
of controllers in conjunction with the critical-mode control algorithm, and the
time-delay in the application of the control forces.

The structural optimization is formulated as a constrained minimization
problem for which the design variables are the floor stiffnesses of the
building and certain control parameters. The objective function is the
structural weight of the building. The constraints include floor drifts, floor
displacements, control forces, and natural frequencies. The critical-mode
control algorithm is developed in order to reduce the amount of computation
time which is important in the structural optimization scheme. The critical-
mode control algorithm is also used to determine the optimal location of a
limited number of controllers. Two methods are investigated; the first is
based on the modal shapes and the second upon the minimization of the control
energy and response performance indices.

SAMPLE RESULTS

Structural Optimization A five story L-shaped structure, shown in Fig. 1 was
designed for frequency (period) constraints. The constraints consist of
keeping the first period between the values of 0.75 and 1.0 sec., the second
period below 0.50 sec. and the third period 0.40 sec. BAll three of the period

constraints became active with T1 = 1.02 sec., T2 = 0.50 sec., and T3 = 0.41

sec., as shown in Fig. 2. The ability to maintain certain frequencies or
periods is in order that that structures can be controlled into specific
regions of the response spectra.

Combining Structural Optimization and Optimum Control The application of
structural optimization to an eight-story one-bay shear building using the
instantaneous closed-loop algorithm is demonstrated herein. The displacement
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constraints of Case 1 are 0.0183 m, 0.0366 m, 0.0549 m, 0.0732 m, 0.0914 m,
0.1097 m, 0.1280 m, 0.1463 m, for 1st through 8th floor, respectively. The
maximum control force is 1334.5 kN for all the floors. For Case 2 the
displacement constraints are reduced to 70%; the other constraints are the
same. At the optimum, the value of the objective function is equal to

187.36 kN and 517.50 kN, respectively. The stiffness distribution is shown in
Fig. 3. It can be seen that optimization is not mainly to reduce the
structural cost but to achieve optimal structural strength through rational
stiffness distribution based on a given set of constraints. An application of
control energy optimization using the optimal structure of Case 1 is shown in
Fig. 4, in which the control forces of the beginning cycle are the results of
Case 1. At the optimum (Iteration 4) the control forces and control energy
have been significantly reduced. The maxima displacements of course are still
bound by the constraints used in that case.

CONCLUSIONS

A number of interesting results have been obtained from which some general
remarks are drawn as follows: 1) The combined structural optimization with
optimal control algorithm can effectively determine optimal control forces and
optimal control devices and locations; using optimal control algorithm alone
cannot yield global optimum results. And 2) Using structural optimization
alone can be treated as passive control algorithm which can yield desired
magnitude in the response spectrum and desired vibration mode shapes so that
the design force levels can be reduced and the unfavorable mode shapes can be
avoided.
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Fig. 1 Five-Story L-shaped Plan
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